
RoadRunner
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RoadRunner User's Guide
© COPYRIGHT 2020–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2020 Online only New for Version 1.0 (R2020a)
September 2020 Online only Revised for Version 1.1 (R2020b)
March 2021 Online only Revised for Version 1.2 (R2021a)
September 2021 Online only Revised for Version 1.3 (R2021b)
March 2022 Online only Revised for Version 1.4 (R2022a)
September 2022 Online only Revised for Version 1.5 (R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Get Started with RoadRunner
1

RoadRunner Product Description . 1-2

RoadRunner System Requirements . 1-3

Install and Activate RoadRunner . 1-4
Verify System Requirements . 1-4
Get License and Product Installer . 1-4
Install RoadRunner . 1-5
Activate License . 1-6
Create a New Project and Scene . 1-6

Get RoadRunner Updates and Upgrades . 1-8
Update Installed Release . 1-8
Upgrade RoadRunner Release . 1-8
Install RoadRunner Add-On Products . 1-8

Update RoadRunner Licenses . 1-9
Update RoadRunner Individual License . 1-9
Update RoadRunner Network Licenses . 1-9

Install Network License Manager for RoadRunner 1-11
Overview . 1-11
Install New Network License Manager for RoadRunner Only 1-11
Install New Network License Manager for All Products 1-13

Update Network License Manager for RoadRunner 1-16
Overview . 1-16
Update Existing Network License Manager for New RoadRunner

Installation . 1-16
Update Existing Network License Manager to Upgrade RoadRunner

Software . 1-17

Create Simple RoadRunner Scene . 1-19
Prerequisites . 1-19
Create New Scene and Project . 1-20
Add Roads . 1-20
Add Surface Terrain . 1-23
Add Elevation and Bridges . 1-25
Modify Junction . 1-28
Add Crosswalk . 1-29
Add Turning Lanes . 1-31
Add Props . 1-37
Other Things to Try . 1-42

iii

Contents

Camera Control in RoadRunner . 1-44
Open Scene . 1-44
Rotate Camera . 1-44
Zoom Camera In and Out . 1-45
Push Past Behavior . 1-46
Move Camera Horizontally . 1-46
Move Camera Vertically . 1-47
Frame Camera on Selected Object . 1-49
Frame Camera on Cursor . 1-53
Change View Projections . 1-54
Set View Direction of Camera . 1-55

Create Roads Around Imported GIS Assets . 1-57
Download and Import GIS Assets into RoadRunner 1-57
Set World Origin . 1-57
Add GIS Assets . 1-58
Create Roads Around GIS Assets . 1-60
Compare Roads Against Imported GIS Assets . 1-62

Create Traffic Signals at Junctions . 1-64
Create New Scene . 1-64
Create Junctions . 1-64
Add Signals to Junctions . 1-65
Inspect Phases and Maneuver Roads . 1-67
Edit Signal Phases . 1-69

RoadRunner Fundamentals
2

RoadRunner Project and Scene System . 2-2
Projects . 2-2
Scenes . 2-4
Project and Scene Version Control . 2-4

Window Layouts . 2-6
Switch Between Tabbed Panes . 2-6
Undock a Pane . 2-7
Dock a Pane . 2-8
Save the Current Window Layout . 2-8
Restore a Saved Window Layout . 2-9
Delete a Saved Window Layout . 2-9
Reset the Window Layout to the Default Layout . 2-9

Coordinate Space and Georeferencing . 2-10
Local Coordinate System . 2-10
Georeferencing (Geographic Coordinates and Projections) 2-11

Manipulate Scene Objects . 2-14
Select Objects . 2-14
Move Objects . 2-20
Create Objects . 2-28
Delete Objects . 2-28

iv Contents

Modify Objects . 2-29

Keyboard Shortcuts and Mouse Actions for RoadRunner 2-31
Editing . 2-31
Object Selection and Manipulation . 2-31
Camera Control (Editing Canvas) . 2-32
Camera Control (2D Editor) . 2-33
Scene Views . 2-33
Scenarios (Requires RoadRunner Scenario) . 2-33
Utilities . 2-33
File Operations . 2-34
Update Linux Ubuntu Key Mapping . 2-34

Choose a RoadRunner Tool . 2-35
Road Tools . 2-35
Junction Tools . 2-37
Lane Tools . 2-38
Marking Tools . 2-39
Prop Tools . 2-41
Terrain Tools . 2-42
GIS Tools . 2-42
Utility Tools . 2-43

RoadRunner Asset Types . 2-45
Texture and Material Assets . 2-45
Prop Assets . 2-45
Marking Assets . 2-47
Road Assets . 2-48
GIS Assets . 2-48

Create, Import, and Modify Assets . 2-50
Create and Import Assets . 2-50
Modify Assets . 2-52
Manage Assets . 2-52
Visualize Assets . 2-54
Upgrade RoadRunner Asset Library . 2-55

Create, Import, and Modify Scene Assets . 2-58
Create Template Asset of Entire Scene . 2-58
Create Template Asset from Selection . 2-58
Add Template Asset to a Scene by Dragging . 2-59
Add Template Asset to Scene Using Copy Paste 2-60

Resolve Geometry Issues . 2-61
Angle Threshold . 2-61
Show Edge Visualization . 2-62
Detect Geometry Issues . 2-63

Point Editing . 2-65
Create a New Point . 2-65
Move a Point . 2-65

Curve Editing . 2-66
Create a New Curve . 2-66
Extend a Curve at Its Ends by Adding Control Points 2-66

v

Add Control Points to the Interior of a Curve . 2-67
Move a Control Point . 2-67
Change the Tangents of a Curve . 2-67

Polygon Editing . 2-68
Create a New Polygon . 2-68
Add Control Points to a Polygon . 2-68
Move a Control Point . 2-69
Change the Tangents of a Polygon . 2-69

Tangent Editing . 2-70
Adjust a Tangent . 2-70
Make Tangents Continuous . 2-71
Make Tangents Discontinuous . 2-73
Curve Tangents . 2-74

Span Editing . 2-75
Span Overview . 2-75
Select a Span or Span Node . 2-76
Create a New Span Node . 2-76
Edit Attributes of a Span or Span Node . 2-77
Move a Span Node . 2-77
Delete a Span Node . 2-77
Tips for Deleting Nodes . 2-77

Region Graph Editing . 2-78
Create a Graph Edge Curve . 2-78
Split a Graph Edge Curve . 2-78
Move a Graph Node . 2-79
Change the Tangents of a Graph Edge Curve . 2-79
Create a Region . 2-79
Split a Region . 2-79
Regions With Holes . 2-80

Merge Multiple RoadRunner Scenes . 2-81
Merge Two Non-Geolocated Scenes . 2-81
Merge Two Geolocated Scenes . 2-84
Merge Geolocated Scene to Non-Gelocated Scene 2-88
Limitations . 2-93

Graphics and Startup Issues . 2-94
System Requirements . 2-94
Graphics Drivers . 2-94
Laptops . 2-95
Remote Desktops . 2-95
Video Card Connection . 2-96
Further Support . 2-97

Obtain RoadRunner Log Files . 2-98
Locate Log Folder . 2-98
Provide Log File Contents to MathWorks Technical Support 2-98

vi Contents

Import Data
3

Importing ASAM OpenDRIVE Files . 3-2
Import ASAM OpenDRIVE File and Build Scene . 3-2
Explicit Lane Direction Priority . 3-3
Limitations . 3-4

Decompress LAZ Files . 3-5
Decompression Process . 3-5

Download GIS Data for Use in RoadRunner . 3-8
Choose USGS Interface for Downloading GIS Data 3-8
Download GIS Data . 3-8

Importing ASAM OpenCRG Files . 3-10
Import ASAM OpenCRG File . 3-10

Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0)
Data . 3-12

Choose Area of Interest . 3-12
Import and Explore Data . 3-12
Build Roads . 3-16
Troubleshoot Import and Build Issues . 3-19

Import Custom Data Using RoadRunner HD Map 3-21
Introduction . 3-21
Compile Protocol Buffers for RoadRunner HD Map 3-21
Prepare Custom Data . 3-22
Create RoadRunner HD Map Binary File from Custom Data 3-23
Import HD Map File into RoadRunner . 3-35

Build Roads Using OpenStreetMap Data . 3-37
Import OpenStreetMap File . 3-37
Explore Imported Data . 3-38
Build Roads . 3-40
Troubleshoot Import and Build Issues . 3-45
Limitations . 3-47

Design Scenes
4

Resolve Triangulation Issues in Junctions . 4-2
Adjust Road Elevations . 4-2
Bank Roads . 4-2
Use Slip Connections . 4-3

How Surfaces Work in RoadRunner . 4-4
Terrain Surface Model . 4-4
Surfaces and Roads . 4-7
Bridges . 4-9

vii

Extruded Surfaces . 4-10
Surfaces and Elevation . 4-11

Create Parking Garage . 4-12
Create a Parking Level Scene Template . 4-12
Create Ground Level . 4-14
Add Levels to Parking Garage . 4-15
Complete Garage Structure . 4-17

Export Scenes
5

Export to AutoCAD . 5-2
AutoCAD Export . 5-2

Export to FBX . 5-3
FBX Export . 5-3
Advanced Details . 5-3

Export to glTF . 5-5
glTF Export . 5-5
Limitations . 5-5

Export to OpenFlight . 5-6
OpenFlight Export . 5-6
Limitations . 5-6

Export to OpenSceneGraph . 5-7
OpenSceneGraph Export . 5-7
Limitations . 5-7

Export to Wavefront OBJ . 5-8
Wavefront Export . 5-8
Advanced Details . 5-8

Export to GeoJSON . 5-9
GeoJSON Overview . 5-9
GeoJSON Export . 5-9
Export Options . 5-9
Sample Exported GeoJSON File . 5-10
Traffic Signal Phases in GeoJSON . 5-11

Export to USD . 5-15
USD Export . 5-15
Limitations . 5-15

Convert Asset Data Between RoadRunner and ASAM OpenDRIVE 5-16
Open Asset Configuration File . 5-16
Explore File Structure . 5-16
Configure Assets for Export . 5-17
Configure Imported Assets . 5-20
Configure Asset Mapping File Interactively . 5-20

viii Contents

Export to ASAM OpenDRIVE . 5-24
ASAM OpenDRIVE Overview . 5-24
Export to ASAM OpenDRIVE . 5-24
Export Options . 5-24
ASAM OpenDRIVE Representations . 5-26
Limitations . 5-37

Left-Hand Drive Export to ASAM OpenDRIVE . 5-39
Recommended Approach . 5-39
ASAM OpenDRIVE Details . 5-39
RoadRunner Export . 5-39
Examples . 5-40

Add Metadata to RoadRunner Scene Elements . 5-42
Add Metadata . 5-42
Set Attributes . 5-43

Set ASAM OpenDRIVE Attributes Using Metadata 5-45
Load RoadRunner Scene . 5-45
Add Metadata for Road . 5-45
Add Metadata for Junction . 5-45
Export to ASAM OpenDRIVE . 5-46
Inspect ASAM OpenDRIVE Attributes . 5-46

Export to ASAM OpenCRG . 5-48
Export to ASAM OpenCRG . 5-48

Segmentation . 5-49
Segmentation Overview . 5-49
Toggle Segmentation Display . 5-49
Categories . 5-49

Downloading Plugins . 5-51
Unity . 5-51
Unreal and CARLA . 5-51

RoadRunner Metadata Export . 5-52
Metadata Overview . 5-52
File Details . 5-52

Export to Apollo . 5-54
Apollo Overview . 5-54
About the Different Apollo Maps . 5-54
Generating Necessary Map Files . 5-54
Visualizing Maps in Apollo Dreamview . 5-55
Routing Simulations in Apollo Dreamview . 5-55
Visualizing Maps in SVL Simulator . 5-55
Apollo User Asset Configuration . 5-55
Unsupported Features . 5-57

Export to Metamoto . 5-58

Export to Unity . 5-59
Unity Overview . 5-59
Installing the Import Tool . 5-59

ix

Exporting from RoadRunner to Unity . 5-61
Importing into Unity . 5-62
Setting Up the Sample Vehicle . 5-64

Export to Unreal Using Datasmith (.udatasmith) File 5-76
Unreal Overview . 5-76
Installing the Plugin . 5-76
Exporting from RoadRunner to Unreal . 5-77
Importing into Unreal . 5-78
Exporting from RoadRunner to Unreal using Datasmith Road 5-79
Importing into Unreal using Datasmith Road . 5-82
Known Issues . 5-84
Limitations . 5-84

Export to Unreal Using Filmbox (.fbx) File . 5-85
Unreal Overview . 5-85
Installing the Plugin . 5-85
Exporting from RoadRunner to Unreal . 5-87
Importing into Unreal . 5-88
Importing Without the Plugin . 5-91
Known Issues . 5-93

Export to CARLA . 5-94
CARLA Export Overview . 5-94
Installing the Plugins . 5-95
Exporting from RoadRunner to CARLA . 5-97
Importing into CARLA . 5-98

Export to VTD . 5-106
Exporting to VTD . 5-106
Export Options (ASAM OpenDRIVE) . 5-106
Export Options (OpenSceneGraph) . 5-107
Import into VTD . 5-108
Limitations . 5-110

Customize Levels of Detail in Exported Scenes 5-111
Set Levels of Detail in Scene . 5-111
Export Highest Levels of Detail from a Scene . 5-112
Modify Triangulation Settings . 5-113
Modify Scene Rendering . 5-117
Pack Props . 5-119
Visualize Performance Improvements . 5-121
Export Scene . 5-122

Export Custom Formats . 5-123
Create Export Configuration XML File . 5-123
Save Export Configuration File to Project . 5-127

Export to STL . 5-129
STL Export . 5-129
Advanced Details . 5-129
Limitations . 5-129

x Contents

Programmatic Scene Interfaces
6

Control RoadRunner Programmatically Using gRPC API 6-2
How The RoadRunner API Works . 6-2
How The RoadRunner API Sends and Receives Data 6-2
Connect to RoadRunner API Server . 6-4
Use RoadRunner API from Command Line . 6-4
Use RoadRunner API in Various Programming Languages 6-5

Convert Scenes Between Formats Using gRPC API 6-8
How the RoadRunner gRPC API Works . 6-8
Open RoadRunner and Start API Server . 6-8
Import and Export Single Scene . 6-9
Import and Export Multiple Scenes . 6-10
Extend RoadRunner Import and Export Options 6-13

Export Multiple Scenes Using gRPC API . 6-14
How the RoadRunner gRPC API Works . 6-14
Open RoadRunner and Start API Server . 6-14
Export Single Scene . 6-15
Export Multiple Scenes . 6-16
Extend RoadRunner Export Options . 6-17

Compile Protocol Buffers for RoadRunner gRPC API 6-19
Verify Minimum Software Requirements . 6-19
Install gRPC and Protobuf Compiler . 6-19
Copy Protobuf Files to Writable Folder . 6-20
Select Protobuf Files to Compile . 6-20
Compile Protobuf Files . 6-21
Write Clients . 6-22

Create gRPC Python Client for Controlling RoadRunner Programmatically
. 6-23

Prerequisites . 6-23
Create Client File . 6-23
Write Client . 6-23
Call Client . 6-26

Create gRPC C++ Client for Controlling RoadRunner Programmatically
. 6-28

Prerequisites . 6-28
Create Client File . 6-28
Write Client . 6-28
Call Client . 6-32

Control RoadRunner Programmatically in Console Mode 6-34
Export RoadRunner Scene in Console Mode Using MATLAB 6-34
Export RoadRunner Scene in Console mode using gRPC APIs 6-35

Export Multiple Scenes Using MATLAB . 6-38

Convert Scenes Between Formats Using MATLAB Functions 6-41

xi

Build Simple Roads Programatically Using RoadRunner HD Map 6-43

RoadRunner Asset Library Product Overview
7

RoadRunner Asset Library Product Description . 7-2

xii Contents

Get Started with RoadRunner

1

RoadRunner Product Description
Design 3D scenes for automated driving simulation

RoadRunner is an interactive editor that lets you design 3D scenes for simulating and testing
automated driving systems. You can customize roadway scenes by creating region-specific road signs
and markings. You can insert signs, signals, guardrails, and road damage, as well as foliage,
buildings, and other 3D models. RoadRunner provides tools for setting and configuring traffic signal
timing, phases, and vehicle paths at intersections.

RoadRunner supports the visualization of lidar point cloud, aerial imagery, and GIS data. You can
import and export road networks using ASAM OpenDRIVE®. 3D scenes built with RoadRunner can be
exported in FBX®, glTF™, OpenFlight, OpenSceneGraph, OBJ, and USD formats. The exported scenes
can be used in automated driving simulators and game engines, including CARLA, VIRES VTD,
NVIDIA DRIVE Sim®, SVL, Baidu Apollo®, Unity®, and Unreal Engine®.

RoadRunner Asset Library lets you quickly populate your 3D scenes with a large set of realistic and
visually consistent 3D models. RoadRunner Scene Builder lets you automatically generate 3D road
models from HD maps.

1 Get Started with RoadRunner

1-2

RoadRunner System Requirements
RoadRunner is an interactive editor that lets you design 3D scenes for simulating and testing
automated driving systems. Before you install RoadRunner, check that your system meets these
required specifications.

Specification Recommended Minimum Requirement
Operating System Windows®: Windows 10 x64

Linux®: Ubuntu® 16.04 and
18.04.

Windows: Windows 10 x64

Linux: Ubuntu 16.04

CPU Intel® or AMD® x86-64
processor with four logical cores
operating at 3.5 GHz or higher

Intel or AMD x86-64 processor
operating at 2.5 GHz or higher

Memory 16 GB 8 GB
Video Card NVIDIA® GTX 1060 3 GB OpenGL® 3.2-compatible with 1

GB VRAM
Disk SSD hard drive 2 GB available disk space

For more details on graphics card requirements and support with graphics issues, see “Graphics and
Startup Issues” on page 2-94.

See Also

More About
• “Install and Activate RoadRunner” on page 1-4

 RoadRunner System Requirements

1-3

Install and Activate RoadRunner
RoadRunner is an interactive editor that lets you design 3D scenes for simulating and testing
automated driving systems.

The procedures in this topic are for a single RoadRunner computer installation or update/upgrade on
Windows or Linux. These procedures can be performed by an individual license holder or by an end
user or administrator with a network license.

Follow these procedures to install RoadRunner for the first time, update an installed release of
RoadRunner, or upgrade an installed release of RoadRunner to a new release.

Network License Administrators Before you or your end users install RoadRunner, perform the
following tasks:

• Install the network license manager. See “Install Network License Manager for RoadRunner” on
page 1-11.

• Download the network license file and the platform-specific product installer and save them to
removable media or a network location. You will need to give these items to your end users for
them to install on their own computers.

Verify System Requirements
Before you install RoadRunner, check that your system meets these required specifications.

Specification Recommended Minimum Requirement
Operating System Windows: Windows 10 x64

Linux: Ubuntu 16.04 and 18.04.

Windows: Windows 10 x64

Linux: Ubuntu 16.04
CPU Intel or AMD x86-64 processor

with four logical cores operating
at 3.5 GHz or higher

Intel or AMD x86-64 processor
operating at 2.5 GHz or higher

Memory 16 GB 8 GB
Video Card NVIDIA GTX 1060 3 GB OpenGL 3.2-compatible with 1

GB VRAM
Disk SSD hard drive 2 GB available disk space

Get License and Product Installer
Use an Individual License

Get your RoadRunner license by following these steps.

1 Go to the License Center on the MathWorks® website.

If prompted, sign in to your MathWorks Account.
2 Click the RoadRunner license in your account.

1 Get Started with RoadRunner

1-4

https://www.mathworks.com/licensecenter

3 On the Install and Activate tab, click Activate a Computer.
4 In the form displayed, enter all requested information. When finished, click Submit.
5 Download or email the license file and save it to a folder on the computer where you will install

RoadRunner.

Next, download the product installer by following these steps.

1 Sign in to your MathWorks Account on the MathWorks website.
2 Under My Software, click the down arrow next to your RoadRunner license.

This action takes you to the Downloads page where you can find the download RoadRunner link.
If you see Get Latest Release, click Download R2022b to get to the right page..

3 Under Additional Product Downloads, click Get R2022b RoadRunner.
4 Download the platform-specific installer to the computer on which you want to install

RoadRunner.

Use a Network License

• End Users — Get the license file and platform-specific installer from your license administrator
and copy them to the computer where you are installing RoadRunner.

• Network/License Administrators — Give end user the platform-specific installer (or provide
access on a network share) and the modified network license. See “Step 3. Configure Network
License” on page 1-12 for instructions on configuring the network license for end user access to
RoadRunner software.

Install RoadRunner
For RoadRunner installation, GUI installation is available for Windows and GUI and command line
methods are available on Linux platforms. Installation instructions vary based on the platform and
method you choose.

Platform and
Installation Method

Instructions

Windows GUI 1 Double-click the downloaded product installer.
2 Follow all prompts to complete installation.

Linux GUI 1 Double-click the .deb file that you just downloaded.
2 Click Install and follow all prompts.

Linux command line 1 Open a command prompt.
2 Enter the following command, replacing release_number with the

current release number:

sudo dpkg -i RoadRunner/ release_number.deb

For example, for the R2022b release, use this command:

sudo dpkg -i RoadRunner_R2022b_glnxa64.deb
3 Follow all prompts to complete installation.

 Install and Activate RoadRunner

1-5

Activate License
Before you can use RoadRunner, you must activate the license. Follow these steps to install an
individual or network RoadRunner license on your computer.

Note If you do not have a license, see “Get License and Product Installer” on page 1-4.

1 On your desktop, launch RoadRunner and follow all prompts.

• Windows — Launch RoadRunner from the shortcut on the desktop or Start Menu.
• Linux — Launch RoadRunner from the installed shortcut. To find this shortcut, click Home

and type "roadrunner" in the text field or go to "/usr/share/applications".
2 When prompted for a license file, enter the path to the license file from “Get License and Product

Installer” on page 1-4.
3 Follow any additional prompts to complete activation.

Create a New Project and Scene
After you install and activate RoadRunner, you can now create a project to get started creating
scenes.

RoadRunner uses a project folder to store the assets (materials, models, and so on) that you can use
within the application. If you do not already have an existing project, you need to create one. See
“RoadRunner Project and Scene System” on page 2-2.

After following the previous instruction, RoadRunner opens to a new blank scene.

1 Get Started with RoadRunner

1-6

To get started, you can use the Road Plan Tool to create your first road. Alternatively, use one of the
other tools to start creating your scene. For more on getting started, see the Getting Started with
RoadRunner video series or the “Create Simple RoadRunner Scene” on page 1-19 example.

If you experience rendering issues or crashes on startup, see “Graphics and Startup Issues” on page
2-94 for troubleshooting help.

See Also

Related Examples
• “Get RoadRunner Updates and Upgrades” on page 1-8
• “Graphics and Startup Issues” on page 2-94
• “Import Scene Data”
• “Design Scenes”
• “Choose a RoadRunner Tool” on page 2-35
• “Install Network License Manager for RoadRunner” on page 1-11
• “Update Network License Manager for RoadRunner” on page 1-16

External Websites
• License Center
• Getting Started with RoadRunner

 Install and Activate RoadRunner

1-7

https://www.mathworks.com/videos/series/getting-started-with-roadrunner.html
https://www.mathworks.com/videos/series/getting-started-with-roadrunner.html
https://www.mathworks.com/licensecenter
https://www.mathworks.com/videos/series/getting-started-with-roadrunner.html

Get RoadRunner Updates and Upgrades

Update Installed Release
You can download and install a more recent version of the release of MATLAB® that you currently
have installed. For example, if you have R2022b installed, you might be able to download a more
recent version of R2022b. This version is called a MATLAB update. When you install a MATLAB
update, you get not only the most recent update for your version but also all previous updates for
your version as well.

When an updated version of RoadRunner for your installed release is available, download the installer
again, and then rerun the installation, following the instructions in “Install and Activate RoadRunner”
on page 1-4.

Upgrade RoadRunner Release
Upgrading involves installing a newer general release than the current installation on your computer,
for example, from R2020b to R2022b. The Software Maintenance Service on your license must be
current and it determines which releases you can upgrade to. For more information, contact Sales.

To upgrade to a new release of RoadRunner, rerun the steps in “Install and Activate RoadRunner” on
page 1-4.

Install RoadRunner Add-On Products
To install RoadRunner add-on products (RoadRunner Asset Library, RoadRunner Scene Builder, or
RoadRunner Scenario) complete these steps:

1 Contact Sales to put the add-on product on your RoadRunner license.
2 Follow all instructions in “Install and Activate RoadRunner” on page 1-4. You must get an

updated license, download and rerun the installer to get the added products, and activate the
updated license.

See Also

Related Examples
• “Install and Activate RoadRunner” on page 1-4
• “Update RoadRunner Licenses” on page 1-9

1 Get Started with RoadRunner

1-8

https://www.mathworks.com/company/aboutus/contact_us/contact_sales.html
https://www.mathworks.com/company/aboutus/contact_us/contact_sales.html

Update RoadRunner Licenses
If you are an individual RoadRunner user, you can download and install an updated RoadRunner
license on your computer. If you are a network license administrator, you can update the network
license for add-on products or to add users or seats to the license.

Update RoadRunner Individual License
When you get an updated license for RoadRunner, you must update the license on your computer.

To update your license, use the following procedure.

1 Go to the License Center on the MathWorks website. Sign in to your MathWorks account if
prompted.

2 Click the RoadRunner license in your account.
3 On the Install and Activate tab, under Get License File, click the down arrow next to your

RoadRunner license.
4 Enter the release for the license, and then click Continue.
5 Download or email the license file and save it to a folder on the computer where the previous

RoadRunner license was located. When you have completed this step, click Done.
6 Launch RoadRunner, and then click License to update the license on your computer.
7 When prompted for the license file, enter the path to the license file you just downloaded.
8 Follow any additional prompts to complete the updated license activation.
9 Restart RoadRunner.

Update RoadRunner Network Licenses
When you receive a new license from MathWorks because the products or seat counts have changed,
plan to update the license file on the network server at a time when users are least likely to be
accessing a RoadRunner license.

To update the license:

1 Make a copy of the existing RoadRunner network license on the license server.
2 Go to License Center on the MathWorks website. Sign in to your MathWorks Account, if

prompted.
3 On the Install and Activate tab, under Get License File, click the down arrow next to

RoadRunner Server.
4 Download or email the license file and save it to a folder on the computer where the previous

RoadRunner network license is located. When you have completed this step, click Done.
5 Stop the network license manager.
6 Open the existing license on the server and the new license in an editor. You are going to copy

most of the new license into the old license with these instructions:

a In the existing license, delete all content except the SERVER and DAEMON lines at the top of
the file.

b In the new license, copy all content starting from below the SERVER and DAEMON lines to the
end.

 Update RoadRunner Licenses

1-9

https://www.mathworks.com/licensecenter
https://www.mathworks.com/licensecenter

c Paste the copied content into the existing license below the SERVER and DAEMON lines.
d Save the existing license. You can store the new license as a backup, remembering that the

SERVER and DAEMON lines must be replaced with those specific to your organization.
7 If you have an options file, depending on how it is configured, you might have to update it. If you

do not have an options file, skip this step.
8 Start the network license manager.
9 Have end users restart RoadRunner.

See Also

Related Examples
• “Update Network License Manager for RoadRunner” on page 1-16

1 Get Started with RoadRunner

1-10

Install Network License Manager for RoadRunner

Overview

Note You must be a network license administrator to perform these procedures. If you are an end
user on a network license and have been asked to install and/or activate RoadRunner yourself, follow
the instructions in “Install and Activate RoadRunner” on page 1-4.

Before you or your end users can install and run RoadRunner software, you must first install a
network license manager from MathWorks to manage the RoadRunner network license. The
instructions in this topic apply to both Network Named User and Concurrent licenses.

Select one of these workflows:

• If you want to install a network license manager for RoadRunner only, see “Install New Network
License Manager for RoadRunner Only” on page 1-11.

• If you want to install a network license manager for RoadRunner and other MathWorks products,
see “Install New Network License Manager for All Products” on page 1-13.

If you already have the MathWorks network license manager and you want to add RoadRunner, see
“Update Existing Network License Manager for New RoadRunner Installation” on page 1-16.

Install New Network License Manager for RoadRunner Only
Follow this workflow if you are installing the network license manager from MathWorks for the first
time and you are planning to install only RoadRunner at this time.

Step 1. Download RoadRunner Network License

1 Go to License Center on the MathWorks website and select the RoadRunner network license.
2 On the Install and Activate tab, click Activate to Retrieve License File and follow all prompts.

For application label, enter "RoadRunner Server."
3 Download or email the license file and save it on the server that will be hosting the network

license manager.

Step 2. Install Network License Manager

1 Download the MathWorks-specific license manager daemons from License Manager Files on the
MathWorks website.

The license manager consists of four binaries:

• lmgrd, the core license manager binary
• MLM, the MATLAB vendor daemon
• lmutil, a suite of tools for administering the license manager
• lmtools.exe, a graphical front end for the license manager (Windows only).

2 Manually install the network license manager:

a Extract the downloaded folder and place the folder in the desired destination

 Install Network License Manager for RoadRunner

1-11

https://www.mathworks.com/licensecenter
https://www.mathworks.com/support/install/license_manager_files.html

b Place the file license.lic (downloaded in the previous step) somewhere you can remember,
optimally with lmgrd and MLM.

When you have completed installing the network license manager, go to the next step, Configure
Network License. Do not start the network license manager at this time.

Step 3. Configure Network License

For all network license types, configure network and end user license. If using a Network Named
User License, set up named users.

1 Open the network license file for editing.
2 The SERVER line identifies the server (host and port number). Add a SERVER line to the top of

the license file, as follows:

SERVER host hostid port

An example of this syntax is:

SERVER Server1 0123abcd0123 12345
3 The DAEMON line identifies the name of the network license manager daemon. Add the

DAEMON line with the name of the network license manager daemon to the next line, as follows:

DAEMON MLM <path to MLM.exe>

An example of this syntax is:

DAEMON MLM $lmroot/etc/glnxa64/MLM

$lmroot is where you installed the network license manager.
4 Create end user license.

a Create a license file that points to the license server for each end user installation of
RoadRunner.

i Create a text file, and name it network.lic.
ii From the network license file, copy the SERVER line and paste it into the new license file

as the first line. This server line specifies the host, hostID, and port of the license server
and has the following format:

SERVER host hostid port

An example of this syntax is:

SERVER Server1 0123abcd0123 1711

By copying the line rather than recreating it, you are less likely to mistype the
information.

iii For the second line, add:

USE_SERVER
iv Save the license file.

b Put the network.lic file on each end user computer, using one of two options.

1 Get Started with RoadRunner

1-12

• Option 1: If the end user will be performing the activation, give the license file to them.
• Option 2: On the end user's computer, put the license file in an accessible folder and set

the "MLM_LICENSE_FILE" environment variable to specify the path to the file (or the
folder containing it).

5 If you are the administrator on a Network Named User License, complete the following steps:

a Follow the procedure in “Set Up Named User Licensing”, in which you will create an options
file. This options file is used by the network license manager to identify the specific named
users to whom you have assigned right-to-use privileges.

b Make sure the DAEMON line in the license file you downloaded during network license
installation contains the correct path to the options file. See “Check the Options File”.

Step 4. Start Network License Manager

Start the license manager.

Step 5. Ready to Install RoadRunner

When you have completed updating the network license manager, you can then install RoadRunner
software on individual computers.

You have the following options for installing RoadRunner:

• You can install and activate each installation yourself. See “Install and Activate RoadRunner” on
page 1-4 and follow all steps in the procedure.

• You can have each end user perform their own installation and activation. Give each user a copy of
the network license file (network.lic) and the platform-specific product installer and have them
follow all steps in “Install and Activate RoadRunner” on page 1-4. You must set up the network
license first; see Set up Network License

• You can install RoadRunner on each computer but have the end user activate it.

1 “Install and Activate RoadRunner” on page 1-4 (but don't activate the software)
2 Give the end user a copy of the network license (network.lic) and have them put it on the

end user computer where RoadRunner was installed.
3 Instruct the end user to follow the procedures in “Activate License” on page 1-6.

Note If you are performing a RoadRunner installation for the first time, consider first installing and
activating RoadRunner on a test computer. If your test is successful, you can start the individual
installations with confidence.

Install New Network License Manager for All Products
Follow this procedure if you are planning to install RoadRunner and other MathWorks products for
the first time, but you have not yet installed the network license manager.

Step 1. Install Network License Manager and Other MathWorks Products

For this procedure, before you add the RoadRunner license, you will use the MathWorks product
installer to install the network license manager and other MathWorks products.

 Install Network License Manager for RoadRunner

1-13

https://www.mathworks.com/matlabcentral/answers/102968-how-do-i-start-or-stop-the-network-license-manager

1 Select one of the following options to install the network license manager:

• “Install on Server Connected to Internet”
• “Install on Offline Server”

2 Go to “Install Products” and complete your MATLAB installation. When you have finished, return
here.

Step 2. Download and Configure Network Licenses

1 If the network license manager is running, Stop the license manager before continuing.
2 Go to License Center on the MathWorks website and select the RoadRunner network license.
3 On the Install and Activate tab, click Activate to Retrieve License File and follow all prompts.

For application label, enter "RoadRunner Server."
4 Download or email the license file and save it on the server that is hosting the network license

manager.
5 Combine your RoadRunner network license with the MATLAB network license. See How do I

serve multiple MATLAB licenses from the same network license manager? in MATLAB Answers.

Step 3. Start Network License Manager

Start the license manager.

Step 4. Ready to Install RoadRunner

When you have completed updating the network license manager, you can then install RoadRunner
software on individual computers.

You have the following options for installing RoadRunner:

• You can install and activate each installation yourself. See “Install and Activate RoadRunner” on
page 1-4 and follow all steps in the procedure.

• You can have each end user perform their own installation and activation. Give each user a copy of
the network license file (network.lic) and the platform-specific product installer and have them
follow all steps in “Install and Activate RoadRunner” on page 1-4. You must set up the network
license first; see Set up Network License

• You can install RoadRunner on each computer but have the end user activate it.

1 “Install and Activate RoadRunner” on page 1-4 (but don't activate the software)
2 Give the end user a copy of the network license (network.lic) and have them put it on the

end user computer where RoadRunner was installed.
3 Instruct the end user to follow the procedures in “Activate License” on page 1-6.

Note If you are performing a RoadRunner installation for the first time, consider first installing and
activating RoadRunner on a test computer. If your test is successful, you can start the individual
installations with confidence.

1 Get Started with RoadRunner

1-14

https://www.mathworks.com/matlabcentral/answers/102968-how-do-i-start-or-stop-the-network-license-manager
https://www.mathworks.com/licensecenter
https://www.mathworks.com/matlabcentral/answers/93517-how-do-i-serve-multiple-mathworks-licenses-from-the-same-network-license-manager
https://www.mathworks.com/matlabcentral/answers/93517-how-do-i-serve-multiple-mathworks-licenses-from-the-same-network-license-manager
https://www.mathworks.com/matlabcentral/answers/102968-how-do-i-start-or-stop-the-network-license-manager

See Also

Related Examples
• “Install and Activate RoadRunner” on page 1-4
• “Update RoadRunner Network Licenses” on page 1-9
• “Get RoadRunner Updates and Upgrades” on page 1-8
• “Update Network License Manager for RoadRunner” on page 1-16

More About
• “Network Named User License Administration”
• “Concurrent License Administration”

External Websites
• License Center

 Install Network License Manager for RoadRunner

1-15

https://www.mathworks.com/licensecenter

Update Network License Manager for RoadRunner

Overview
Follow the procedures in this topic if you are adding or upgrading RoadRunner software and require
an updated network license manager from the same release.

• If you are adding RoadRunner, update the network license manager first.
• If you are upgrading RoadRunner to a newer release, you can perform the network license

manager update and the RoadRunner upgrade in either order.

Either way, you must have the new or updated license in place before you restart the network license
manager. Instructions are in the procedures described in this topic.

Note You must be a network license administrator to perform these procedures. Updating the
network license manager software requires you to stop and restart the license manager.

Select one of these workflows:

• To install RoadRunner with an existing network license manager from MathWorks, see “Update
Existing Network License Manager for New RoadRunner Installation” on page 1-16.

• To upgrade RoadRunner to a newer release, and you need to update the network license manager
to the same release, see “Update Existing Network License Manager to Upgrade RoadRunner
Software” on page 1-17.

Update Existing Network License Manager for New RoadRunner
Installation
To add RoadRunner to an existing MATLAB installation, the network license manager version must be
the same or higher as the version of RoadRunner you plan to install. For example, if your MathWorks
products and network license manager are from R2020a and you want to download and install
RoadRunner R2020b, you must update your existing network license manager to the R2020b release.

Step 1. Download RoadRunner Network License

1 Go to License Center on the MathWorks website and select the RoadRunner network license.
2 On the Install and Activate tab, click Activate to Retrieve License File and follow all prompts.

For application label, enter "RoadRunner Server."
3 Download or email the license file and save it on the server that is hosting the network license

manager.

Step 2. Configure Network License

1 Combine your new RoadRunner network license with the existing MATLAB network license. See
How do I serve multiple MATLAB licenses from the same network license manager? in MATLAB
Answers.

2 If you have a Network Named User license and are adding users for RoadRunner, modify the
options file to include the additional users.

1 Get Started with RoadRunner

1-16

https://www.mathworks.com/licensecenter
https://www.mathworks.com/matlabcentral/answers/93517-how-do-i-serve-multiple-mathworks-licenses-from-the-same-network-license-manager

3 If you have a Concurrent license and have added new seats for RoadRunner, create a license file
for each new machine that will be running RoadRunner by copying the license file you already
created for your other RoadRunner installations..

Step 3. Update Network License Manager

Follow the instructions in “Update Network License Manager Software”. This procedure requires you
to stop and restart the network license manager.

Step 4. Ready to Install RoadRunner

When you have completed updating the network license manager, you can then install RoadRunner
software on individual computers.

You have the following options for installing RoadRunner:

• You can install and activate each installation yourself. See “Install and Activate RoadRunner” on
page 1-4 and follow all steps in the procedure.

• You can have each end user perform their own installation and activation. Give each user a copy of
the network license file (network.lic) and the platform-specific product installer and have them
follow all steps in “Install and Activate RoadRunner” on page 1-4. You must set up the network
license first; see Set up Network License

• You can install RoadRunner on each computer but have the end user activate it.

1 “Install and Activate RoadRunner” on page 1-4 (but don't activate the software)
2 Give the end user a copy of the network license (network.lic) and have them put it on the

end user computer where RoadRunner was installed.
3 Instruct the end user to follow the procedures in “Activate License” on page 1-6.

Note If you are performing a RoadRunner installation for the first time, consider first installing and
activating RoadRunner on a test computer. If your test is successful, you can start the individual
installations with confidence.

Update Existing Network License Manager to Upgrade RoadRunner
Software
Follow these procedures if you are updating the network license manager so that you can upgrade
your RoadRunner release.

1 If you have received an updated RoadRunner network license, complete the steps in “Update
RoadRunner Licenses” on page 1-9 first.

2 Stop the license manager.
3 Download the MathWorks-specific license manager daemons from License Manager Files on the

MathWorks website.
4 Manually install the network license manager by extracting the downloaded folder and placing

the folder where you had the previous network manager files.
5 Start the license manager.

You can now upgrade the software. See “Upgrade RoadRunner Release” on page 1-8.

 Update Network License Manager for RoadRunner

1-17

https://www.mathworks.com/matlabcentral/answers/102968-how-do-i-start-or-stop-the-network-license-manager
https://www.mathworks.com/support/install/license_manager_files.html
https://www.mathworks.com/matlabcentral/answers/102968-how-do-i-start-or-stop-the-network-license-manager

See Also

Related Examples
• “Install and Activate RoadRunner” on page 1-4
• “Update RoadRunner Network Licenses” on page 1-9
• “Get RoadRunner Updates and Upgrades” on page 1-8

More About
• “Network Named User License Administration”
• “Concurrent License Administration”

External Websites
• License Center

1 Get Started with RoadRunner

1-18

https://www.mathworks.com/licensecenter

Create Simple RoadRunner Scene

In this section...
“Prerequisites” on page 1-19
“Create New Scene and Project” on page 1-20
“Add Roads” on page 1-20
“Add Surface Terrain” on page 1-23
“Add Elevation and Bridges” on page 1-25
“Modify Junction” on page 1-28
“Add Crosswalk” on page 1-29
“Add Turning Lanes” on page 1-31
“Add Props” on page 1-37
“Other Things to Try” on page 1-42

RoadRunner is an interactive editor that lets you design 3D scenes for simulating and testing
automated driving systems. This example shows how to create a simple scene containing an
intersection, bridges, and trees in the surrounding terrain, similar to the scene shown here:

Prerequisites
Before beginning this example, make sure that your system meets these prerequisites:

• You have downloaded, installed, and activated RoadRunner by following the instructions described
in “Install and Activate RoadRunner” on page 1-4.

• You have a license for the “RoadRunner Asset Library Add-On”. This example uses assets that are
available only in this library.

Although this example covers some basic camera operations, for a more complete understanding of
how the RoadRunner camera works, consider reviewing the “Camera Control in RoadRunner” on
page 1-44 example first.

 Create Simple RoadRunner Scene

1-19

Create New Scene and Project
In RoadRunner, each scene you create is part of a project, which is a folder of assets (scene
components) that can be shared across all scenes in that project. Create a new scene and a new
project in which to put that scene.

1 Open RoadRunner, and from the start page, click New Scene.
2 On the Select a Project window, click New Project.
3 In your file system, browse for an empty folder in which to create the project. If an empty folder

does not exist, create one and name it My Project. The folder name becomes the name of the
project.

4 When prompted, click Yes to install the RoadRunner Asset Library in your project.

RoadRunner opens to a new scene with an empty scene editing canvas.

The name of the project that you specified appears in the title bar. The name of the scene also
appears in the title bar, but it is displayed as New Scene until you save the scene and give it a name.

You can create a new scene, change scenes, or change projects at any time from the File menu. When
you reopen RoadRunner, you can select recent scenes that you worked on from the start page, in the
Recent Scenes list.

Add Roads

When you open a new scene, RoadRunner opens with the Road Plan Tool selected.
Instructions on using this tool appear in the bottom status bar. By right-clicking in the scene editing
canvas with this tool selected, you can add control points that shape the geometry of a road.

1 At the bottom center of the scene editing canvas, right-click to add the first control point of a
new road.

1 Get Started with RoadRunner

1-20

2 At the top center of the canvas, right-click to add a second control point and form your first road
segment.

3 Click away from the road to deselect the road and finish creating it.

 Create Simple RoadRunner Scene

1-21

4 Create a new straight road that intersects the first road by right-clicking to its left, right-clicking
to its right, and then clicking away from the road. The two roads form a junction.

So far you have created straight roads. To form curved roads, right-click multiple times to add
additional control points to a road. Create a curved road that overlaps the intersection.

1 Right-click within the top-left quadrant of the intersection.
2 Right-click within the top-right quadrant of the intersection. The first created road segment is

straight.
3 Right-click in the bottom-right quadrant of the intersection. The area enclosed within the

intersection and the curved road forms a ground surface.

1 Get Started with RoadRunner

1-22

You can extend existing roads by selecting the endpoint of a road and right-clicking to add more
control points.

1 In the curved road you created, click to select the end near the top of the canvas.
2 Right-click the left end of the intersection. RoadRunner creates a road that meets the necessary

geometric constraints. The enclosed area again forms a ground surface.

To modify any road, click to select it and try dragging its control points or moving the entire road. You
can also right-click a road to add additional control points. For example, in this road network, you can
add control points to smooth out the curve on the left side of the intersection.

Add Surface Terrain
So far, only the areas enclosed by roads contain surface terrain. To add surface terrain around the

entire road network, you can use the Surface Tool .

1 In the toolbar, click the Surface Tool button. Selecting a new tool puts RoadRunner in a different
mode that enables new interactions and makes different scene objects selectable. With the
Surface Tool selected, the roads are no longer selectable but the road surface nodes become
selectable.

 Create Simple RoadRunner Scene

1-23

2 Zoom out of the scene, either by using the scroll wheel or by holding Alt and right-click and then
dragging down or left.

3 Right-click above the road network to add a new surface node. Then, keep right-clicking at points
around the road to form a circle. When you reach the top node again, right-click it to connect the
surface graph and commit the surface to the canvas.

1 Get Started with RoadRunner

1-24

To modify the surface size, click and drag the surface nodes. To modify the curve of the surface, click
the segments between nodes, and then click and drag the tangent lines.

Add Elevation and Bridges
Up to this point, the scene has been flat. Modify elevation in the scene by changing the height of one
of the roads.

1 Hold Alt and then click and drag the camera to view the scene at an angle.

 Create Simple RoadRunner Scene

1-25

2 Click the Road Plan Tool button to make roads selectable again. Then, click to select the first
curved road that you created.

3 To elevate the road, use the 2D Editor, which enables you to view scene aspects such as road
profiles and road cross-sections. In the 2D Editor, select the road profile and raise it
approximately 10 meters.

The road is now elevated in the scene canvas above the intersection. Instead of forming
junctions, the elevated road forms overpasses.

1 Get Started with RoadRunner

1-26

Roads attach to the surface terrain. When you elevate a road, the terrain elevates with it. Increasing
elevation can lead to visual artifacts below the overpasses. To resolve this issue, you can create

bridge spans by using the Road Construction Tool .

1 Rotate the camera and zoom in to see the visual artifacts at the overpasses.

2 Click the Road Construction Tool button.
3

On the left toolbar, click the Auto Assign Bridges button . This operation, which is
available only when you are using the Road Construction Tool, converts only those road
sections that are directly above a region to bridge spans. Use the default bridge span inflation
and click OK. The roads spans are converted to bridges and the visual artifacts are removed.

 Create Simple RoadRunner Scene

1-27

If the bridges do not form correctly, try adjusting the road elevation or the bridge span inflation
and rerun the Auto Assign Bridges operation.

Modify Junction
Some tools enable you to select and modify properties at junctions. Modify the corner radius of the
four-way intersection.

1

Click the Corner Tool button , and then click to select the four-way intersection.

2 By default the junction has a corner radius of 5 meters. Increase this value by using the
Attributes pane. This pane contains information and editable attributes about currently selected
items. In the Corner Tool, selecting the junction selects all four corners of the junction, so you
can modify the attributes of all four corners at the same time.

In the Attributes pane, set the Corner Radius attribute of all four corners to 10.

1 Get Started with RoadRunner

1-28

The junction corners expand in the scene editing canvas.

Alternatively, you can modify the Corner Radius attribute value by clicking on the attribute name

 and dragging up or down.

Add Crosswalk
Add a crosswalk to the intersection.

1 Rotate the camera to view the intersection from the top down. To focus the camera on the
selected intersection, press the F key.

 Create Simple RoadRunner Scene

1-29

2

Click the Crosswalk and Stop Line Tool button . The intersection displays blue chevrons
for adding stop lines to the intersection.

3 From the Library Browser, select a crosswalk to add to the intersection. The Library Browser
stores all assets available to add to a scene. Assets include 3D objects, markings, textures, and
materials.

In the Library Browser, select the Markings folder, and then select the
ContinentalCrosswalk asset. A preview of the asset displays in the asset viewer.

1 Get Started with RoadRunner

1-30

4 Click within the intersection to clear the blue chevrons. Then, right-click in the intersection to
apply the selected crosswalk asset to the intersection.

Add Turning Lanes
Convert one of the roads at the intersection into a more complex highway road that includes a
turning lane with arrow markings.

Change Road Style

The existing roads all use the default road style, which is of a simple two-lane divided highway with
sidewalks. Update one of the roads at the intersection to use a road style with additional lanes.

1 Zoom out and rotate the camera to view the scene at an angle similar to the one shown here.

 Create Simple RoadRunner Scene

1-31

2 In the Library Browser, open the RoadStyles folder, and then select the
MainStreetCenterTurn asset. This road style asset includes shoulder lanes, two passing lanes
on each side, and a median lane. Optionally, rotate and move the camera in the asset viewer to
inspect the road style.

3 Drag the selected road style onto the road closest to the camera, as shown here. The road
updates to the new style and switches back to the Road Plan Tool. The road maintains the
corner radius and crosswalk style previously applied.

1 Get Started with RoadRunner

1-32

Create Turning Lane at Intersection

Create a short left-hand turn lane near the intersection.

1 Rotate the camera and zoom in near the crosswalk on one side of the road that has the new road
style.

2
Click the Lane Carve Tool button . This tool enables you to create a tapering cut in an
existing lane to form a turning lane.

3 Click to select the road. Then, right-click the right side of the median lane where you want the
tapering cut to start. Drag the blue line diagonally to the left side of the median lane where you
want the tapering cut to end and the turning lane to start.

 Create Simple RoadRunner Scene

1-33

4 The newly formed turning lane still has the styles of the median lane. Update the lane markings
to match the style of a standard turning lane.

a In the Library Browser, select the SolidSingleWhite asset and drag it onto the right side
of the turning lane. The lane marking changes to a solid single white line.

b Select the SolidDoubleYellow asset and drag it onto the two marking segments that form
the left side of the turning lane. The lane marking segments change to solid double yellow
lines.

1 Get Started with RoadRunner

1-34

5 Add a turning arrow to the lane. In the Stencils folder of the Library Browser, select the
Stencil_ArrowType4L asset. Drag this asset into the turning lane at the point where you want
to add the arrow stencil.

6

By adding the arrow stencil, RoadRunner selects the Marking Point Tool to make it the
active tool. You can now add the second arrow by right-clicking at the point where you want to
add it.

 Create Simple RoadRunner Scene

1-35

7 Modify the marking material of the arrows to make them appear more worn. First, select the two
arrows. In the Markings folder of the Library Browser, select the LaneMarking2 material
asset. Then, drag this asset into the Attributes pane for the selected arrows and over the
existing LaneMarking1 material asset.

The arrows update to use the new more worn-looking material.

1 Get Started with RoadRunner

1-36

Repeat these steps to create the turning lane on the other side of the intersection.

Add Props
To enhance the scene with more detail, add props to it. Props are 3D objects such as posts, poles, and
signs that you can place on and around roads. Add tree props around the road using multiple
techniques.

Add Individual Props

Add bushes to one section of the terrain.

1 Zoom out and rotate the camera to fit the entire road network and surrounding terrain in view.

 Create Simple RoadRunner Scene

1-37

2 In the Library Browser, open the Props folder and select the Trees subfolder.
3 Select a bush prop (one of the asset files that begins with Bush_). Drag the bush onto a section

of the scene. RoadRunner switches to the Prop Point Tool . Drag additional bushes into
the scene or right-click to add more bushes. All the bushes are aligned with the surface terrain.

Add Props Along Curve

Add props along a curve to follow the edge of the road.

1

Click the Prop Curve Tool button .
2 In the Library Browser, in the Trees folder, select a California palm tree prop (one of the asset

files that begins with CalPalm_).
3 Right-click along the road edge of one side of the intersection to add a line of palm trees to it.

Click away from the prop curve to complete the line.

1 Get Started with RoadRunner

1-38

4 To make each individual tree in the span moveable and selectable, you can convert the curve to
individual props. Select the prop curve, and in the Attributes pane, click Bake. The palm trees
become individual props and RoadRunner switches to the Prop Point Tool. Move some of the
palm trees to the other side of the intersection.

Alternatively, to add a prop along a span of road, you can click the Prop Span Tool button ,
select a road, and drag the prop onto the road edge.

Add Props in Specified Area

Add props in a specified area of the ground surface.

1

Click the Prop Polygon Tool button .
2 In the Library Browser, in the Trees folder, select a cypress tree prop (one of the asset files

that begins with Cypress_).
3 Right-click within an empty area of the surface terrain to draw a polygon containing the selected

prop. Click away from the polygon to finish drawing it. Then move the points or tangents to
change the shape of the polygon.

 Create Simple RoadRunner Scene

1-39

4 Optionally, modify the prop polygon by using the attributes in the Attributes pane. For example,
to increase or decrease the number of props in the polygon, use the Density attribute. To
randomize the distribution of assets in the polygon, click Randomize.

Add Props of Varying Types

So far you have added a single type of prop to the scene. To add a variety of props to a scene
simultaneously, you can create a prop set.

1 In the Library Browser, in the Trees folder, hold Ctrl and select the three props you added to
the scene in the previous sections.

2 Select New, then Prop Set and give the prop set a name. The new prop set is stored in the
Trees folder. The Attributes pane displays the three props in the set and a preview of the prop
set.

1 Get Started with RoadRunner

1-40

3 Click the Prop Polygon Tool button. Create a prop polygon on an empty part of the terrain that
contains the new prop set.

 Create Simple RoadRunner Scene

1-41

Optionally, you can also replace the existing cypress tree props with the new prop set by
dragging the prop set onto the polygon of cypress trees.

Other Things to Try
You have now created a simple road network containing a realistic turning lane, multiple overpasses,
and trees of varying types.

You can now enhance the scene using additional tools. For example, try these things:

• Add more roads or connect the existing roads in the scene. To smooth the transitions between
roads that have different numbers of lanes, use lane tools such as the Lane Tool, Lane Width
Tool, Lane Add Tool, or Lane Form Tool.

• Add traffic signals to the intersection by using the Signal Tool. To modify the paths through the
lanes at each turn signal, use the Maneuver Tool. For an example, see “Create Traffic Signals at
Junctions” on page 1-64.

• Add additional props to the scene, such as barrels, buildings, and traffic signs. To modify the text
of signs, use the Sign Tool.

In addition, you can try exporting the scene to one of the supported export formats. These export
options are on the File menu, under Export. To customize export options before exporting, use the

1 Get Started with RoadRunner

1-42

Scene Export Preview Tool. If you are exporting to ASAM OpenDRIVE, use the OpenDRIVE
Export Preview Tool. This image shows how the export preview of the scene you created looks when

you click the OpenDRIVE Export Preview Tool button .

If you want to create a new scene that is based on a real-world location, then you can import
geographic information system (GIS) data such as aerial imagery into RoadRunner and create scenes
around it. For an example, see “Create Roads Around Imported GIS Assets” on page 1-57.

See Also

Related Examples
• “Window Layouts” on page 2-6
• “Camera Control in RoadRunner” on page 1-44
• “Create Roads Around Imported GIS Assets” on page 1-57
• “Create Traffic Signals at Junctions” on page 1-64
• “Choose a RoadRunner Tool” on page 2-35
• “Keyboard Shortcuts and Mouse Actions for RoadRunner” on page 2-31

 Create Simple RoadRunner Scene

1-43

Camera Control in RoadRunner
RoadRunner enables you to edit large-scale and small-scale details of a 3D environment that can span
many kilometers or miles. The interactive camera controls enable you to navigate this large 3D space
quickly and effectively. This example shows you the fundamentals of camera controls in the
RoadRunner scene editing environment.

Open Scene
Open a basic scene to move the camera around in. From the menu bar, select File, then Open Scene.
Then, open FourWaySignal.rrscene, which is one of the default scenes that is included in the
Scenes folder of RoadRunner projects. The scene opens top-down in the center of the screen,
inclined at an angle of 45 degrees.

Rotate Camera
Camera control in RoadRunner is based on a polar viewing model, where the camera orbits around a
point of interest at a fixed distance. By default, when you open a new scene, the point of interest is
1.5 meters above the origin, to approximate the position of the head of a person standing at the
center of your scene. The point of interest for this scene is at the center of the intersection.

You can rotate the camera around the point of interest at any time and from within any tool by
pressing and holding either the Alt key or the Windows key and moving the pointer.

Note In Linux, Ubuntu 16.04, pressing the Alt key moves the current window and pressing the
Windows key shows certain help overlays. To use the Windows key instead of the Alt key for moving
windows, update Ubuntu 16.04 according to the instructions in “Update Linux Ubuntu Key Mapping”
on page 2-34.

1 Get Started with RoadRunner

1-44

Hold the Alt key, click anywhere in the scene, and drag the pointer. Observe the change in camera
rotation with respect to the point of interest.

Zoom Camera In and Out
To zoom the camera in, hold Alt and the right-click button, and then drag the pointer up or right.
Conversely, to zoom the camera out, hold Alt and the right-click button, and then drag the pointer
down or left. Alternatively, you can use the mouse scroll wheel to zoom in or out.

Hold Alt and the right-click button, and then drag the pointer down to zoom out. Observe the change
in the fixed distance at which the camera orbits the scene.

While still holding Alt and the right-click button, drag the pointer up and zoom all the way in to the
point of interest until the camera stops moving. Zooming in this far focuses the camera at the
pavement.

 Camera Control in RoadRunner

1-45

Hold Alt and the left-click button to rotate the camera. The camera movement at this distance is
similar to standing at a fixed location and looking around as the camera orbits the scene.

Push Past Behavior
Push past behaviour enables you to scroll past the pivot point, when the pivot point is right in front of
the camera. Scrolling past the pivot point allows you to reach the desired location in the scene
without being blocked. Once you push past the pivot point, the pivot point is maintained in the new
position in the scene.

Move Camera Horizontally
To move the camera horizontally along the ground (xy) plane, first hold the Alt key and the left-click
and right-click buttons. Then, drag the pointer. Alternatively, you can move the camera by holding the
middle-click button and dragging the pointer.

Hold Alt, the left-click button, and the right-click button, and then drag the pointer to move the
camera to the left and right. The point of interest shifts to the new location.

1 Get Started with RoadRunner

1-46

Move Camera Left (Drag
Left)

Original Location Move Camera Right (Drag
Right)

Move Camera Vertically
For simple environments, you can keep the height of the camera point of interest set to the default.
However, for more complex environments, you might need to move the point of interest up or down.
For example, if you are designing a scene with bridges, you might need to move the point of interest
down so that you can maneuver the camera under a bridge.

To move the camera up, hold Alt, Shift, left-click, and right-click, and then drag the pointer down.
Conversely, to move the camera down, hold these same keys and buttons, and then drag the pointer
up. Alternatively, you can hold Alt, Shift, and the middle-click button and then drag the pointer up or
down for the same affect.

Hold Alt, Shift, left-click and right-click, and then drag the pointer up and down. Observe the change
in the point of interest as the camera moves up and down.

 Camera Control in RoadRunner

1-47

Move Camera Up (Drag Down)

Original Location

1 Get Started with RoadRunner

1-48

Move Camera Down (Drag Up)

Frame Camera on Selected Object
From within any tool, you can center, or frame, the camera on the currently selected objects. To
center the camera on a selected object, press the F key. Alternatively, from the View menu, select
Frame Selected.

1 Zoom out of the scene. Hold Alt and the right-click button, and then drag the pointer down.

2

Click the Road Plan Tool button to make the roads selectable.
3 Select the longer road and press the F key. The camera centers on the longer road.

 Camera Control in RoadRunner

1-49

4 Select the other road and press F. The camera zooms in to center on the shorter road.

5

Click the Prop Point Tool button to make the traffic light props selectable.
6 Select one of the prop points and press F. The camera zooms in on the selected prop.

1 Get Started with RoadRunner

1-50

When you rotate the camera by holding Alt and then clicking and dragging, the camera rotates
around the prop.

If no view or object is selected, pressing the F key or selecting Frame Selected from the View menu,
frames all of the data in the scene, preserving the camera angle position. For example, in this image,
the scene is located at one end of the editing canvas. Clicking Frame Selected without selecting any
view or object, brings the scene data back into focus.

 Camera Control in RoadRunner

1-51

If the scene is empty, pressing the F key or selecting Frame Selected, takes you back to the origin
point in the scene editing canvas.

1 Get Started with RoadRunner

1-52

Frame Camera on Cursor
You can center, or frame, the camera to the point where your cursor is currently located. To center
the camera on a cursor, follow these steps:

1 Zoom out of the scene. Hover your cursor at one end of the road.

 Camera Control in RoadRunner

1-53

2 Press V. The camera zooms in to end of the road.

Change View Projections
The RoadRunner camera can use either a perspective or orthographic viewing projection.

• The perspective projection is the default viewing projection, which causes distant objects to
appear smaller than close objects.

• The orthographic projection is similar to what you might find in a CAD tool. It is useful for precise
positioning, usually from a top-down point of view. In orthographic mode, objects do not change
apparent size as they get closer or further away.

The camera controls work the same in both projection modes.

Move the camera so that the entire intersection is in view. Then, press O to switch to orthographic
mode. In this mode, the traffic lights are all the same size. To zoom in to a specific location in the

1 Get Started with RoadRunner

1-54

orthographic mode, hover your cursor over the location and scroll in. This takes you to the desired
location.

Press P to switch back to perspective mode, where the traffic lights in the distance appear smaller.

Orthographic Mode (Press O) Perspective Mode (Press P)

Set View Direction of Camera
You can set the view direction of the camera to due north, south, east, west, or top-down. To change
the view direction, on the View menu, select Direction, and then the select the view direction you
want. Alternatively, you can use number pad shortcut keys.

Change the view direction of the scene by using these keys on the number pad. This table shows
sample view directions when the camera is at the intersection of the scene and their corresponding
number pad shortcut keys. In the top-down view, the camera also rotates to point north.

 North (8 key)

 Camera Control in RoadRunner

1-55

West (4 key) Top-Down (5 key) East (6 key)

 South (2 key)

See Also

Related Examples
• “Create Simple RoadRunner Scene” on page 1-19
• “Keyboard Shortcuts and Mouse Actions for RoadRunner” on page 2-31

1 Get Started with RoadRunner

1-56

Create Roads Around Imported GIS Assets
RoadRunner supports a variety of geographic information system (GIS) formats. You can import GIS
assets into RoadRunner and use them as a reference to construct your road network.

In this example, you create roads around imported GIS assets that you download from the U.S.
Geological Survey (USGS). The example uses these GIS assets:

GIS Asset Description
Aerial Imagery Visual reference for roads and surface texture

mapping
Point Cloud Visual reference and object placement

information (trees, buildings, markings, and so
on)

Elevation Height information about the terrain

Download and Import GIS Assets into RoadRunner
1 First you need to download and setup the GIS assets that you want to reference.
2 Download aerial imagery, elevation, and point cloud data of a specific location from the Basic

National Map Explorer Interface at the USGS. For this example, search for Downey, California, a
city in the county of Los Angeles. To learn how to download GIS data supported by RoadRunner,
see “Download GIS Data for Use in RoadRunner” on page 3-8.

3 Open a RoadRunner project and create a new scene by selecting File, then New Scene from the
main menu.

4 To store the imported assets , right-click in the Library Browser and select New, then Folder,
and name the folder. For this example, name the folder GIS.

5 To organize the assets in the GIS folder, create subfolders for each type of asset: Aerial
Imagery, Elevation, and Lidar folders. Move the downloaded assets to the respective folders
by dragging the aerial imagery, elevation, and point cloud files into the Library Browser.

For more details on importing assets, see “Create, Import, and Modify Assets” on page 2-50.

Set World Origin
Now that you have downloaded and stored the GIS assets, set a point of origin around which to apply
them in the scene.

 Create Roads Around Imported GIS Assets

1-57

https://viewer.nationalmap.gov/basic/
https://viewer.nationalmap.gov/basic/

1 To project the GIS assets around a specific geographic position, you use the World Settings

Tool . For this example, set the world origin latitude to 33.9383 degrees and the world
origin longitude to -118.1296 degrees. Click Apply World Changes. The region displayed on
the scene canvas defines the area where you load the GIS assets.

2 You can adjust the region size in which you want to load the assets. With the World Settings
Tool selected, use the Extents attribute to change the size of the region.

Add GIS Assets
After you set the origin, load the aerial imagery, elevation, and point cloud data into the scene.

1 In the Library Browser, navigate to and select the aerial imagery file, making sure that it has a
projection. To check the projection of an asset, click the file and in the Attributes pane, check
the File Projection (WKT) section.

2 Drag the aerial imagery file into the scene. A rotating orange wheel on the top right of the canvas
appears, indicating the loading progress of the file. RoadRunner places the file in the correct
world and scene position with respect to the specified World Origin. For example, in this image,
the aerial imagery data covers the top portion of the scene.

1 Get Started with RoadRunner

1-58

3 Similarly, to add the elevation files, drag the files into the scene. Make sure that it has a
projection. You can drag multiple files of the same type into the scene editing canvas.

Dragging elevation files into a scene automatically switches RoadRunner to the Elevation Map
Tool and adds the appropriate elevation to the scene, projected with respect to the world origin.

To toggle the visibility of the elevation data, from the View menu, select Elevation Map .
RoadRunner provides additional options for toggling the visibility of other GIS asset types.

Elevation Disabled Elevation Enabled

4 Finally add point cloud data. Check for projection in the File Projection (WKT) attribute. Select
multiple files and drag them into the scene. To toggle the visibility of the point cloud data, from
the View menu, select Point Cloud .

The point cloud data, as shown by the grey dots, are automatically placed in the correct regions
with respect to the world origin.

 Create Roads Around Imported GIS Assets

1-59

5 Customize the point cloud appearance and feature visualization. From the Point Cloud Tool in
the Attributes pane, set Color By to Intensity. Then, select Use Custom Intensity and adjust
the Intensity Min and Intensity Max values to make the scene more visible. This example
shows the difference in intensity when the maximum intensity is reduced from 40000 to 8000.

Create Roads Around GIS Assets
After importing the GIS assets, use the tools in RoadRunner to customize the scene.

1 To build roads around the imported assets, toggle the display of aerial imagery assets. On the

View menu, select Aerial Imagery. Then, select the Road Plan Tool and draw a road
over the existing road imagery.

1 Get Started with RoadRunner

1-60

2 To match the elevation of the road to the imported elevation asset, in the toolbar on the left side

of the canvas, click the Project Roads button .
3 Use the 2D Editor to view and adjust the elevation profile of the road.

For example, these views show the road elevation (red) being adjusted to match the imported
elevation data (blue). You can also adjust the point cloud data (green) to match the elevation
data.

 Create Roads Around Imported GIS Assets

1-61

To control the position or height of the road, in the 2D Editor, select the road centers (purple
dots) and adjust them to the desired height. To adjust multiple road centers to the same height or
position, press Ctrl+A and select the points to maneuver them to the appropriate height or
position.

Compare Roads Against Imported GIS Assets
To check the accuracy of road mapping and synchronization, compare the road network that you
created with the imported GIS assets data. From the View menu, toggle each GIS asset view on and
off by selecting and deselecting Aerial Imagery (F4), Elevation (F5), and Point Cloud (F6).

1 Get Started with RoadRunner

1-62

To further customize the scene, you can use different assets to add 3D models, textures, road signs,
stencils, and other data shared by multiple RoadRunner scenes. For more information, see
“RoadRunner Asset Types” on page 2-45.

For example, the left scene shows an Aerial Imagery view for a different data set, and the right
scene shows the corresponding customized scene. This scene was designed using different tools
within RoadRunner to create buildings, roads, parking lots, signboards, trees, and other scene
objects.

Create Roads Automatically from HERE HD Live Map Road Data

To automatically generate 3D road models, you can use the add-on product, RoadRunner Scene
Builder, which imports and automatically synthesizes 3D road models from HERE HD Live Map.

See Also

Related Examples
• “Import Scene Data”
• “Download GIS Data for Use in RoadRunner” on page 3-8

External Websites
• Here Technologies

 Create Roads Around Imported GIS Assets

1-63

https://www.mathworks.com/products/roadrunner-scene-builder.html
https://www.mathworks.com/products/roadrunner-scene-builder.html
https://www.here.com/
https://www.here.com/

Create Traffic Signals at Junctions
This example shows how to create working traffic signals at a junction using a four-way protected left
traffic pattern. To add traffic signals in RoadRunner, you use the Signal Tool, which lets you
configure junction signalization and control traffic signal phases. This example shows the entire
workflow for creating a junction, adding dynamic signalization to the junction, adding props or
assemblies to the signal junction, and modifying signal phases and maneuvers.

Create New Scene
Create a new scene within a project.

1 Open RoadRunner, and from the start page, click New Scene.
2 On the Select a Project window, select the project that you want to work in.

The RoadRunner canvas opens, where you can start building your scene.

Create Junctions
To place traffic signals in your scene, first create a junction. You can use the Road Plan Tool to
create automatic junctions at road intersections.

1 Get Started with RoadRunner

1-64

To create a four-way intersection, create two roads that fully overlap:

1

Click the Road Plan Tool .
2 Right-click at a start location and an end location to create a road segment.
3 Create another road segment that overlaps the previously created road. This action creates a

four-way junction.

To create custom junctions manually, you can use the Custom Junction Tool.

Add Signals to Junctions

To configure junction signalization and signal traffic phases, use the Signal Tool .

The Signal Tool provides several autosignalization operations for automatically applying predefined
signalization templates to a junction. The junction signalization can be static (not changing, for
example, controlled by stop signs) or, as in the case of this example, dynamic (controlled by traffic
signals).

The autosignalization operations can also automatically place Prop Assembly Assets and Signal
Assets which will automatically link to the corresponding signals. You can also use predefined prop
assembly to the link the props to the corresponding signals.

1 To add a predefined prop assembly asset to the scene, select the prop in the Library Browser.

Navigate to the Assets folder, and select Assemblies. For this example, select the
ProtectedLeft1 prop.

 Create Traffic Signals at Junctions

1-65

2 To add signalization, click Signal Tool and select the junction.

3 To signalize the junction, click Auto Signalize in the Attributes pane.

1 Get Started with RoadRunner

1-66

4 From the Auto Signalize Junction dialog box, select a signalization template and click Signalize.
For this example, select the four-way Protected Left template. Select Automatically Place
Selected Prop to add the props and link it to the signal.

The scene shows the autosignalized junction with a four-way protected left traffic pattern. When you
add prop or signal assemblies to the scene, they are automatically linked to the junction.

Inspect Phases and Maneuver Roads
You can now inspect and edit maneuver roads, signal phases, and intervals using the Signal Phase
Editor in the 2D Editor pane.

A phase indicates which signals are active and the state of the maneuver roads, for example, whether
traffic may enter the junction along a given maneuver road.

This example shows four phases with three Red-Yellow-Green intervals per phase. An interval is a
period in a junction that corresponds to allowed movements. You can drag the timeline bar across
phases and observe the maneuver roads changing.

The highlighted (green) maneuver roads in the scene correspond to the first phase (highlighted by a
red box) in the Signal Phase Editor. The phase also shows the road maneuver direction symbols.
That is, the highlighted green maneuver road matches the road symbol in the current phase.

 Create Traffic Signals at Junctions

1-67

The phases, maneuver roads, and signal assets are automatically linked to the junctions. The gray
dotted line shows road gates that link the signal to its corresponding junction.

Click the purple junction gate to view its corresponding signal.

1 Get Started with RoadRunner

1-68

Use the timeline bar to navigate across phases and observe the signal lights changing color with each
interval.

Edit Signal Phases
You can add, remove, or navigate between signal phases using the Signal Phase Editor in the 2D
Editor pane.

Add and Delete Signal Phases

To add a signal phase to your scene:

1 Click the Signal Tool and select the junction you want to signalize.
2 Right-click in the 2D Editor pane to create a phase. You can also right-click beyond the end of

the phases to create additional empty phases.
3 To duplicate a phase, right-click on the existing phase.

To delete a phase, select individual phases in the 2D Editor pane and press the Delete key. To delete
all the phases, select the junction and press the Delete key or select Edit > Delete.

Navigate Between Signal Phases

In the 2D Editor pane, you can either left-click the phase, use Next Phase and Previous Phase on
the left, or drag the timeline bar across the phases to preview the phases and the corresponding
maneuver roads.

 Create Traffic Signals at Junctions

1-69

See Also

Related Examples
• Signal Tool
• Custom Junction Tool
• “Create Simple RoadRunner Scene” on page 1-19
• “Create Roads Around Imported GIS Assets” on page 1-57

External Websites
• Getting Started with RoadRunner

1 Get Started with RoadRunner

1-70

https://www.mathworks.com/videos/series/getting-started-with-roadrunner.html

RoadRunner Fundamentals

• “RoadRunner Project and Scene System” on page 2-2
• “Window Layouts” on page 2-6
• “Coordinate Space and Georeferencing” on page 2-10
• “Manipulate Scene Objects” on page 2-14
• “Keyboard Shortcuts and Mouse Actions for RoadRunner” on page 2-31
• “Choose a RoadRunner Tool” on page 2-35
• “RoadRunner Asset Types” on page 2-45
• “Create, Import, and Modify Assets” on page 2-50
• “Create, Import, and Modify Scene Assets” on page 2-58
• “Resolve Geometry Issues” on page 2-61
• “Point Editing” on page 2-65
• “Curve Editing” on page 2-66
• “Polygon Editing” on page 2-68
• “Tangent Editing” on page 2-70
• “Span Editing” on page 2-75
• “Region Graph Editing” on page 2-78
• “Merge Multiple RoadRunner Scenes” on page 2-81
• “Graphics and Startup Issues” on page 2-94
• “Obtain RoadRunner Log Files” on page 2-98

2

RoadRunner Project and Scene System
In RoadRunner, a project contains assets that are shared by multiple RoadRunner scenes. You can
create many scenes within the same project, and the scenes can share assets within the project.

Project assets include various components that are created from files such as 3D models, texture
maps, and vector graphics. They also include various files specific to RoadRunner, such as materials
and road marking styles.

Projects
When you run RoadRunner, you must select or create a project. The current project is displayed on
the title bar. The current project is always the active project in RoadRunner.

Create New Project

1 Open the RoadRunner application, and on the Scene tab of the start page, click New Scene.
2 In the Select a Project window, click New Project, and browse for the folder in which you want

to create the project. To create a project in a folder, the folder must be empty.

Note If you create a project that is on a network drive, changes made to asset files might not be
automatically reflected in the Library Browser. In addition, performance might be slower. For
improved performance and full Library Browser functionality, create a project on a local disk.

3 Select the assets you want to install with the project. By default, RoadRunner projects include a
small assortment of materials, models, and other assets. You can also separately purchase the
“RoadRunner Asset Library Add-On”, which comes with a large array of generic and country-
specific assets.

• If you have a RoadRunner Asset Library license, click Yes to populate the Assets folder with
the library assets.

• If you do not have a license, this option is disabled. Instead, click No to populate the Assets
folder with a set of default assets included with RoadRunner.

RoadRunner opens to a new scene that is created within the new project. The project contents are
accessible from the folder in which you created the project.

Note It is recommended that you place the entire project folder under version control. For details,
see the “Project and Scene Version Control” on page 2-4 section.

Project Folder Contents

A project folder contains these subfolders:

• Project — This folder contains a single file named Project.rrproj, which defines a unique
reference ID for the project. Do not modify or move this file.

• Scenes – This folder stores individual scenes that use this project. When you first create a project,
this folder contains several sample scenes. When you save a new scene for the current project,
RoadRunner defaults to this folder.

2 RoadRunner Fundamentals

2-2

• Exports – This folder is the default location to write out exported data from RoadRunner. When
you first create a project, this folder is empty. You are not required to use this folder for exported
data. For more information on exporting data, see “Export Scenes”.

• Assets – This folder stores all asset files available for use in a scene. This folder and its
subfolders appear in the Library Browser.

For every asset within the Assets tree, RoadRunner automatically creates an associated metafile
with the .rrmeta file extension. The metafile contains additional data associated with the asset,
the details of which vary for different asset types. The metafile also contains a unique ID, which
you can use to identify a specific asset. Even if you rename an asset or move it into a different
folder within the Assets folder tree, this ID does not change.

Always keep this metafile in the same location as the asset itself. Asset operations performed with
the Library Browser automatically update the corresponding metafiles. For more details on
working with assets, see “Create, Import, and Modify Assets” on page 2-50.

Change Current Project

To switch to a new project when you already have one open in RoadRunner, from the menu bar, select
File and then Change Project. Then, in the Select a Project window, create a new project, browse
for the root folder of a different project, or select a recently opened project from the Recent
Projects list.

Save Project

To save a project, from the menu bar, select File and then Save Project. In addition, saving a scene
also saves any changes you made to the current project. Modified assets are not saved until the
current project is saved.

 RoadRunner Project and Scene System

2-3

Scenes
A scene file contains an area that includes objects such as roads, surfaces, props, and other scene
aspects. It is the main type of file edited in RoadRunner. Scenes can represent anything from a small
area, such as a single intersection, to a large area, such as a portion of a city. A scene can contain
multiple roads, intersections, road markings, props, terrain sections, and so on.

Individual scenes are saved as .rrscene files, typically in the Scenes folder of a project. You can
create many scenes within the same project, and the scenes can share assets within the project.

RoadRunner has exactly one scene active at any given time. The name of the current scene is
displayed in the title bar. If the scene has not yet been saved, the title bar displays the scene name as
New Scene.

If you have unsaved changes in your current scene, RoadRunner prompts you to save your current
scene before starting a new scene, loading an existing scene, or exiting the program.

Create New Scene

To create a new scene while working in an existing scene, on the menu bar, select File and then New
Scene. Alternatively, press Ctrl+N.

To create a new scene from the start page, follow these steps:

1 On the Scene tab of the start page, click New Scene.
2 Select a previous project or click New Project to create your scene in a new project.

Open Existing Scene

To open an existing scene that was recently opened, open it directly from the Recent Scenes menu
under File. Alternatively, select File and then Open, or press Ctrl+O, and then browse for the scene
you want to open.

If the selected scene file is in the Scenes subfolder of a project folder, that project is loaded
automatically. If your scene is saved elsewhere, the scene stores the relative path to the project
directory.

If RoadRunner is unable to find or load the project, the software provides the option of selecting a
previous project or browsing for a different one.

Save Scene

To save a scene, from the menu bar, select File and then Save Scene. Saving a scene also saves any
changes you have made to the current project. Modified assets are not saved until the current project
is saved.

Project and Scene Version Control
When multiple people are making changes to project assets or scenes, using a revision control system
such as Git™ to control file versions. With a revision control system, follow these policies:

• Manage files, including metafiles (.rrmeta), within the project tree with the revision control
system.

2 RoadRunner Fundamentals

2-4

• Do not merge any RoadRunner internal files because they are binary files.
• Make sure only one user makes changes to any particular file at any time.

See Also

Related Examples
• “Create, Import, and Modify Assets” on page 2-50
• “Create Simple RoadRunner Scene” on page 1-19
• “RoadRunner Asset Types” on page 2-45

 RoadRunner Project and Scene System

2-5

Window Layouts
The RoadRunner user interface is organized into panes. You can customize the layout of the pane to
meet your preferences by resizing the panes and moving them into different configurations.
RoadRunner preserves the window layout from session to session.

You can save and name up to five different layouts. You can restore saved layouts by using the layout
controls at the bottom of the window menu.

Switch Between Tabbed Panes

Panes can be stacked on top of each other. By default, the Output pane and Library Browser pane
are tabbed.

To switch between tabbed panes, click the applicable tab at the bottom of the pane.

2 RoadRunner Fundamentals

2-6

Undock a Pane

You can move a pane to a separate window (for example, to move it to a different monitor) by clicking
and dragging the top of the pane. After moving a pane to a new window, you can move and resize this
pane independently from the main application.

 Window Layouts

2-7

Dock a Pane

You can change where panes are docked in the application. This option can be useful for making
better use of screen real estate on wide monitors.

1 Click and drag the top of the pane (this action works for docked and undocked panes).
2 Hover over the edge of the application where you would like to dock the pane.

• If you hover over the edge of the application without an existing pane, the pane will be docked
to that edge.

• If you hover over the middle of another pane, the pane will be docked on top of that pane
(that is, the panes will be tabbed).

• If you hover over the left or right side of a bottom pane (or the top or bottom of a side pane),
then both pane will be displayed next to each other.

Save the Current Window Layout
1 Select the Window > Save Layout menu option. A dialog box prompts you to name the layout. If

you already have five layouts saved, saving another layout will replace the oldest saved layout.
2 Type in the desired name of the layout. If you type in the name of an existing layout, the new

layout will replace that existing layout.

2 RoadRunner Fundamentals

2-8

Restore a Saved Window Layout
Select the Window > Apply Layout > (layout) menu option, where (layout) is the name of the
layout you want to restore.

Delete a Saved Window Layout
Select the Window > Delete Layout > (layout) menu option, where (layout) is the name of the
layout you want to delete.

Reset the Window Layout to the Default Layout
Select the Window > Reset Layout menu option.

 Window Layouts

2-9

Coordinate Space and Georeferencing

Local Coordinate System

3D coordinates are displayed and edited in a right-handed Cartesian coordinate system. All spatial
units are represented in meters, and angles are represented in degrees.

The 'X' and 'Y' dimensions represent 'Easting' and 'Northing' directions, respectively. The 'Z'
dimension is height.

This table illustrates local object transformations along each axis (for example, when using the Prop
Point Tool). Each image shows a transformation of the prop in the image in the positive direction for
each axis.

 X (Easting) Y (Northing) Z (Height)
Move

Rotate

Scale

2 RoadRunner Fundamentals

2-10

Georeferencing (Geographic Coordinates and Projections)

RoadRunner scenes can be optionally georeferenced, which means that coordinates in the scene can
be mapped to locations on the Earth. This mapping is important when you want to model a real-world
location by using GIS reference data. For more details, see “Import Scene Data”.

Georeferencing Basics

Georeferencing is a varied and complex topic. RoadRunner hides most of this complexity, especially if
you are using well-formed GIS reference data.

In many cases, georeferencing data is carried through when exporting. If you want to align exported
data with other GIS data (such as a GPS trace), then a basic familiarity with geospatial
transformations is required.

To perform geospatial coordinate transformations, RoadRunner uses the PROJ library, which is a
robust and industry-standard library for transforming horizontal and vertical coordinate systems. If
you need to work with georeferenced data in your own application stack, you can use PROJ for
optimal robustness and compatibility (or use a library that uses PROJ internally, such as GDAL or
PDAL).

Georeference a Scene

To add or modify a scene's location on the Earth, use the World Settings Tool. An initial location is
also applied automatically when first dragging any GIS asset into a nongeoreferenced scene.

Georeferenced Coordinate System

RoadRunner supports a variety of input projections and datums when loading external GIS data.
However, all editing and displaying is performed in a specific georeferenced coordinate system.

Any external GIS data is transformed automatically into this coordinate system before it is displayed.
Horizontal Georeferenced Coordinate System

To map the X and Y coordinates of the Local Coordinate System on to the Earth, an application must
define a horizontal coordinate system (typically by defining a geospatial projection and datum).

RoadRunner uses a coordinate system that reduces scale and rotational distortion surrounding
(within ~100 km of) a latitude/longitude point of interest. You can control the latitude/longitude point
(using the World Settings Tool), but control over the projection is not permitted.

Specifically, RoadRunner uses a Transverse Mercator projection (with a scale factor of 1.0) over the
WGS84 datum. For example, a scene centered at a latitude of 32.0 and a longitude of -118 has a
horizontal georeferenced coordinate system defined as (in Proj syntax):

 Coordinate Space and Georeferencing

2-11

https://proj.org/
https://gdal.org/
https://pdal.io/
https://proj.org/

+proj=tmerc +lat_0=32.0 +lon_0=-118.0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m

Vertical Georeferenced Coordinate System

To map Z (height) coordinates of the Local Coordinate System on to the Earth, an application must
define a vertical coordinate system.

Roadrunner uses heights over the EGM96 Geoid, as defined by a 15-minute grid (such as the one
found here). Grid files are used to convert between WGS84 ellipsoid heights and geoidal heights.

You can find the exact grid file used by RoadRunner by searching for the "egm96_15.gtx" file in the
RoadRunner installation directory.

The vertical coordinate system is also defined in the PROJ string. The full PROJ string for the example
in the horizontal section above is:
+proj=tmerc +lat_0=32 +lon_0=-118 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +geoidgrids=egm96_15.gtx +vunits=m +no_defs

Georeferencing and Exported Data

In addition to the information in the Georeferencing Basics section, this section provides information
about georeferencing information in data exported from RoadRunner.

To align data exported from RoadRunner with other GIS data (or to transform between latitude/
longitude coordinates and coordinates in the export data), you must know the projection and datum
of each data source. RoadRunner expresses this information as a Proj syntax or WKT string.

Many export formats also include projection information. For example, OpenDRIVE on page 5-24
data exported from RoadRunner includes a <georeference> tag defining the projection information
as a PROJ string.

Note In almost all cases, it is not possible to align two georeferenced data sets by simply shifting
them. Projection transformations are more complicated than a simple shift and scale. Instead, rely on
a library like PROJ.

RoadRunner exports data in the same georeferenced coordinate system used by the scene (see
Georeferencing Basics). You can view the PROJ/WKT strings for the current scene in the World
Settings Tool. Control for transforming data into a different projection during export is not
supported.

Exported Data and Grid Files

The exported data also uses the same vertical coordinate system as the scene itself (see
Georeferencing Basics). To interpret the elevations in the exported data, you might need to make use
of the same grid files used by RoadRunner. This might require supplying the grid files to your
external application (if not already present).

In some specific cases, you might be able to ignore the grid files. Examples of these types of cases
include if you do not need to vertically match exported RoadRunner data and external GIS data or if
all of your external GIS data is already using the same vertical datum as the RoadRunner scene.

If you are confident that you do not need the grid files in your external application, you can remove
the +geoidgrids=egm96_15.gtx portion of the PROJ string in any exported data. Because there

2 RoadRunner Fundamentals

2-12

https://en.wikipedia.org/wiki/EGM96
https://download.osgeo.org/proj/vdatum/egm96_15/
https://proj.org/
https://www.ogc.org/standards/wkt-crs
https://proj.org/

can be upwards of a 30 m vertical difference between geoidal heights and ellipsoidal heights, if you
are confident in how the data is to be used downstream.

 Coordinate Space and Georeferencing

2-13

Manipulate Scene Objects
In RoadRunner, the tool you select can affect which objects in a scene that you can select, move,
create, delete, or modify.

Select Objects
You can select objects in the scene editing canvas and in the 2D Editor pane.

Most operations in RoadRunner require selecting one or more objects to act on. The attributes of the
selected objects are displayed in the Attributes pane. Many operations, such as those in the left
toolbar for a selected tool, apply to the currently selected objects.

The current tool defines which types of objects are selectable. For example, the Road Plan Tool
permits the selection of roads but not props, whereas the Prop Point Tool permits the selection of
prop points but not roads.

Some types of objects can be selected only after first selecting a parent object. For example, in the
Road Plan Tool, you must first select a road before the control points for that road are displayed.

RoadRunner enables you to select multiple objects together. Some tools permit the selection of
multiple different types of objects at once.

This screenshot of a simple scene was taken in the Prop Polygon Tool. The scene contains four prop
polygons, which are displayed as light purple outlines. The sections that follow use images from this
scene to show how object selection works.

Selection Colors

Most tools in RoadRunner use a common color language to indicate the selection state. This image
shows polygons in three different selection states.

2 RoadRunner Fundamentals

2-14

• The light purple polygons are objects that are not currently selected.
• The red polygon contains the objects that are currently selected.
• The yellow polygons contain the objects that the mouse is pointing to. This state provides a visual

indication of the object that will be selected if you click.

A fourth color, gray, is also used when selecting overlapping objects. See Cycle-Select Overlapping
Objects.

Select Single Object

To select an object, click the object in the scene. This action deselects any previously selected objects
and selects the object the mouse is pointing to. In this image, the selection that was previously being
pointed to has been clicked and is now selected.

Add Object to Selected Objects

To select an additional object, hold Shift and click an unselected object in the scene. In this image,
an additional object has been added to the previous selection.

 Manipulate Scene Objects

2-15

To remove an object from selection, hold Ctrl+Shift, and then click a selected object in the scene.
This action removes that object from the selected objects, leaving the remaining objects selected.

Alternatively, to add or remove selected objects, hold Shift or Ctrl+Shift and perform a box select.

Box Select a Group of Objects

To perform a box selection, in the scene editing canvas, click and drag to draw a rectangle around the
objects you want to select. There are two box selection options:

• Overlap Box Selection — Select any objects that touch the box.
• Containment Box Selection — Select only objects that are fully contained within the box.

The direction in which you draw the box dictates which selection type is used. This table indicates the
selection type according to the direction in which you draw the box.

Toward top-left

Containment

Toward top-right

Overlap
Toward bottom-left

Overlap

Toward bottom-right

Overlap

In this image of overlap box selection, both polygons that are at least partially within the region are
selected.

2 RoadRunner Fundamentals

2-16

To perform an overlap box selection, click and drag in one of the directions indicated by the red boxes
in the previous table. A red box appears, and any objects touching that box are selected. Optionally,
hold Shift to add the objects to the selected set. Hold Ctrl+Shift to remove the objects from the
selected set.

Tip If no box appears, check that you did not click on or inside a draggable object in the scene. If
you hold Shift prior to the click, a box selection occurs, even if your drag starts outside of a
selectable object.

In this image of containment box selection, only the polygon that is fully contained within the region
is selected.

To perform a containment box selection, click and drag in the upper-left direction. A purple box
appears, and only those objects fully contained within that box are selected. Optionally, hold Shift to
add the objects to the selected set. Hold Ctrl+Shift to remove the objects from the selected set.

Tip If no box appears, then it is likely that you started the box on or inside a selectable object in the
scene. Check that your drag starts outside of a selectable object.

Select All Objects

To select all objects in the scene, from the menu bar, select Edit and then Select All, or press Ctrl
+A. This image shows all of the prop polygons selected.

 Manipulate Scene Objects

2-17

The behavior of a select all action depends on which objects you currently have selected.

• If you have no objects selected, then all selectable objects in the scene are selected.
• If you have objects selected, and any of those objects have unselected child objects, then the

unselected child objects are selected. For example, if you select a single prop polygon using the
Prop Polygon Tool, then the points on that polygon are displayed but are not selected.
Performing a select all operation selects all the points on that polygon, not other polygons in the
scene.

• If you have objects selected, and all child objects are already selected (or no child objects exist),
then all selectable objects in the scene are selected.

Deselect All Objects

To deselect all objects in the scene, from the menu bar, select Edit and then Deselect All, or press
Ctrl+D. This image shows all previously selected polygons now deselected.

Cycle-Select Overlapping Objects

Sometimes multiple selectable objects overlap each other. For example, this image shows three
overlapping prop polygon objects.

2 RoadRunner Fundamentals

2-18

In these cases, you can cycle between the different objects by repeatedly clicking on the overlapping
portion. Each click selects the next overlapping object.

1 Move the pointer over the area where the object overlap, which in this case is in the middle of
the three overlapping polygons. The first object you can select displays in yellow, while the other
overlapping objects display in gray.

2 Click the overlapping portion to select the object. The selected object displays in red, and the
object you can select on the next click displays in yellow.

3 Continue clicking to cycle through the overlapping objects until you reach the object you want to
select. This image shows the next cycle in the selection.

 Manipulate Scene Objects

2-19

Move Objects
Default Tool Translation and Rotation

For tools that enable you to move objects in the scene by selecting and dragging them, follow these
steps:

1 Select one or more objects.
2 Click and drag a selected object to move it. If multiple objects are selected, dragging one object

moves all of the selected objects.

The exact behavior when moving objects depends on the specific tool and type of object. For example:

• Moving props in one of the prop tools automatically projects their heights to the ground surface.
For more details on prop tools, see “Props and Signs”.

• Moving lane marking nodes in the Lane Marking Tool are constrained to lie along the lane
boundary curve.

• Moving a road control point in the Road Plan Tool can automatically update other roads to
enforce tangential continuity.

You can also move many objects during their initial creation.

Translation Tooltip

After selecting an object using the Selection Tool, road tools, or property tools, select View >
Translate to display the translation manipulator, shown in this image. Alternatively, you can select

the translation manipulator by clicking the button from the vertical menu on the left side of
the screen.

2 RoadRunner Fundamentals

2-20

Click and drag the red, blue, or green arrow to translate the object in the horizontal and vertical
directions, respectively. This image shows the rock translated in the horizontal direction.

Rotation Tooltip

Use the rotation manipulators to seamlessly rotate a single object or a group of objects interactively
within a scene. Rotation manipulators support the rotation of these objects in a RoadRunner scene:

• Roads and their slip connections
• Surfaces
• Buildings
• Props (rotation along control points, curves, and polygons)

 Manipulate Scene Objects

2-21

• Markings (rotation along control points, curves, polygons, and parking spaces)

To rotate a single object, select the Prop Point Tool and then select a prop in the scene. From the
View menu, select Rotate.

Alternatively, you can select the rotation manipulator by clicking the button from the vertical
menu on the left side of the screen.

Three rings, representing rotation around the x-, y-, and z- axes, appear on the scene canvas around
the selected object.

2 RoadRunner Fundamentals

2-22

Drag the rings to make rotational adjustments to the object. During rotation, the selected ring
becomes yellow and the other two rings disappear from the canvas. The angle indicator alongside the
selected ring indicates the angle of rotation along the axis of rotation around the selected axis. These
images show the rotation of a tree prop along the x- and z- axes, respectively.

 Manipulate Scene Objects

2-23

Note Object rotation in RoadRunner scenes is compound. If you rotate an object around one axis (for
example, the x- axis), this affects the angle of rotation around the other two axes (y- and z- axes).

To rotate a group of objects, first select the Selection Tool. Then, click the scene canvas and drag to
select all the objects in the rotation group. For more information on selecting multiple objects at
once, see “Select Objects” on page 2-14.

From the View menu, select Rotate. Alternatively, you can select the rotation manipulator by clicking

the button from the vertical menu on the left side of the screen.

Three rings, representing rotation around the x-, y-, and z- axes, appear on the scene canvas around
the center point of the selected objects.

2 RoadRunner Fundamentals

2-24

Drag the rings to make rotational adjustments to the selected objects. The angle indicator alongside
the selected ring indicates the angle of rotation around the selected axis.

 Manipulate Scene Objects

2-25

The new rotation angle does not apply to the selected objects. The objects in the scene maintain their
relative positions to the center point, and characteristics such as slip roads, corners, and maneuver
roads are preserved.

2 RoadRunner Fundamentals

2-26

Note Roads in RoadRunner scenes support rotation around the z- axis, because the control points
along the roads do not support rotation along the x- and y- axes.

A selected set of props rotate around the center point of the selection, such that all props maintain
their starting distance from to that center point. In this image, three selected trees rotate around a
center point, maintaining their initial distance from the center point.

 Manipulate Scene Objects

2-27

Create Objects
Many tools provide the ability to create objects. The type of object created and the specific creation
steps depend on the tool. For step-by-step creation instructions, see the documentation for the
specific tool.

In most cases, you can right-click either an existing object or an empty location in the scene to create
an object. Often, you can keep holding down the right-click button to simultaneously create and drag
the object.

Depending on the specific tool, you might need to first select an appropriate asset in the Library
Browser. Some tools require an asset to be selected, while others will change their behavior
depending on whether or not an asset is selected.

Some types of objects can be created by clicking an asset in the Library Browser and dragging the
object into the scene. For example, dragging Prop Model Assets into the scene adds prop points and
automatically switches the currently selected tool to the Prop Point Tool.

Delete Objects
Most tools enable you to delete selected objects. You can refer to the documentation for a specific
tool to learn about deleting objects by using it, however, the steps are often similar to these ones:

1 Select one or more objects.
2 Select the Edit option and then the Delete option in the menu bar, or press Delete.

If an object cannot be deleted, the bottom status bar typically displays an error message.

2 RoadRunner Fundamentals

2-28

Modify Objects
When you select an object in a scene, you can then modify its properties in the Attributes pane. If
you select multiple objects, then the Attributes pane provides additional features for interacting with
them.

This Attributes pane shows the selection of two props created by the Prop Point Tool.

In this selection:

• The group label, Prop Instance (2), shows the number of selected objects selected, which is two
in this case.

• The Prop Style asset picker is dimmed, which indicates that the two props have different assets
assigned to them.

• The asset picker shows the style of the first selected object, which in this case is a drum barrel.
• If the asset picker value changes, then the picker modifies all selected objects and the asset

picker is longer dimmed.
• The selected objects have different Position.X and Position.Y values, but their height

(Position.Z) value is the same. Modifying the Position.X or Position.Y values applies the
same value to all selected objects.

 Manipulate Scene Objects

2-29

• Clicking a button, such as the Add Sign button in the figure, applies the operation to all selected
objects.

To modify an object to use a different asset, select an asset from the Library Browser and drag it
onto the asset picker image in the Attributes pane.

Note Most asset pickers accept only certain types of assets. For example, you can assign Prop
Model Assets and Extrusion Assets to a prop curve by using the Prop Curve Tool, but you cannot
assign a Material Assets.

Some asset pickers enable you to have no asset assigned. To remove an asset from an asset picker,
right-click the asset picker and select Clear. Alternatively, click the asset picker and press Delete.

To quickly locate the currently displayed asset in the Library Browser, click the asset picker. The
asset is selected in the Library Browser.

Although the asset is selected, its attributes do not display. To see and modify the asset attributes,
click the selected asset in the Library Browser.

See Also

Related Examples
• “Create, Import, and Modify Assets” on page 2-50
• “Choose a RoadRunner Tool” on page 2-35

2 RoadRunner Fundamentals

2-30

Keyboard Shortcuts and Mouse Actions for RoadRunner

Editing
These operations apply to the editing window and in some cases panes such as the 2D Editor,
Library Browser, and Attributes panes.

Task Action
Undo or redo. Ctrl+Z or Ctrl+Y

Undo and redo also apply to most selection and
tool change actions.

RoadRunner has an infinite undo and redo stack.
This stack is related to the current scene or
scenario. Operations that change the current
scene or scenario, such as opening a different
scene or creating a new scene, remove all actions
from the stack.

Select all. Ctrl+A
Deselect all. Ctrl+D
Delete. Delete
Copy. Ctrl+C
Paste. Ctrl+V

Object Selection and Manipulation
For more details about object selection and manipulation, see “Manipulate Scene Objects” on page 2-
14.

Task Action
Select an object. Left-click.
Add an object to a selection. Hold Shift, then click the object.
Remove an object from a selection. Hold Ctrl+Shift, then click the object.
Select multiple objects. Hold Shift, then left-click and drag to draw a box

around the objects you want to select.

• Drag the box toward the top-left of the canvas
to select only objects that are fully contained
in the box.

• Drag the box in any other direction (bottom-
left, top-right, bottom-right) to select any
object that is at least partially within the box.

Translate objects. Select an object or objects and press T to show
the translation tool.

 Keyboard Shortcuts and Mouse Actions for RoadRunner

2-31

Task Action
Rotate objects. Select an object or objects and press R to show

the rotation tool.

Camera Control (Editing Canvas)
For more details on controlling the camera in the canvas, see “Camera Control in RoadRunner” on
page 1-44.

Task Action
Rotate the camera around a point of interest. Hold Alt, then click and drag.

Note In Linux, Ubuntu 16.04, pressing the Alt
key moves the current window and pressing the
Windows key shows certain help overlays. To use
the Windows key instead of the Alt key for
moving windows, update Ubuntu 16.04 according
to the instructions in “Update Linux Ubuntu Key
Mapping” on page 2-34.

Zoom in or out. Hold Alt, then right-click and drag up or right to
zoom in, or down or left to zoom out.

Alternatively, move the mouse scroll wheel up or
down.

Pan across the scene in the x-direction or y-
direction.

Hold Alt, left-click, and right-click, then drag.

Alternatively, hold the middle-mouse button, then
drag.

Raise and lower the camera in the z-direction. Hold Alt+Shift, left-click, and right-click, then
drag.

Frame the camera around a selected object. Select an object and press F.
Switch to perspective view, where distant objects
appear smaller than close objects.

Press P.

Switch to orthographic view, where objects do not
change size as they get closer or farther away.

Press O.

Set the camera view to point top down. Press 5 on the number pad.
Set the camera view to point north. Press 8 on the number pad.
Set the camera view to point south. Press 2 on the number pad.
Set the camera view to point west. Press 4 on the number pad.
Set the camera view to point east. Press 6 on the number pad.

2 RoadRunner Fundamentals

2-32

Camera Control (2D Editor)
Task Action
Zoom in or out. Hold Alt, then right-click and drag up or right to

zoom in, or down or left to zoom out.

Alternatively, move the mouse scroll wheel up or
down.

Pan across the scene in the x-direction or y-
direction.

Hold Alt, then click and drag.

Alternatively, hold the middle-mouse button, then
drag.

Frame the camera around an object of interest. Select an object and press F.

Scene Views
Use these keyboard shortcuts to show or hide various scene aspects on the canvas.

Task Action
View shaded wireframe. F3
View aerial imagery. F4
View elevation map. F5
View point cloud. F6
View vector data. F7
View scene. F8
View ASAM OpenDRIVE data. F9
View RoadRunner HD Map. F10
View SD Map. F11

Scenarios (Requires RoadRunner Scenario)
Task Action
Switch to scene editing. Shift+1
Switch to scenario editing. Shift+2
Run or restart simulation. Ctrl+R

Utilities
Task Action
Take screenshot. Ctrl+P

 Keyboard Shortcuts and Mouse Actions for RoadRunner

2-33

File Operations
If you are in scene editing mode (Shift+1), then these operations apply to scenes. If you are in
scenario editing (Shift+2), then these operation apply to scenarios. Use of scenario editing mode and
switching between modes requires RoadRunner Scenario.

Task Action
Create new scene or scenario. Ctrl+N
Open scene or scenario. Ctrl+O
Save scene or scenario. Ctrl+S
Save scene or scenario as. Ctrl+Shift+S
Exit RoadRunner. Alt+F4

Update Linux Ubuntu Key Mapping
In Linux, Ubuntu 16.04, pressing the Alt key moves the current window, and pressing the Windows
key shows certain help overlays. It is recommended that you update Ubuntu to use the Windows key
(instead of the Alt key) for moving windows. To make this update, follow these steps:

1 Install dconf-editor if it is not already installed. At the command line, enter this code:

sudo apt-get install dconf-editor
2 Open dconf-editor.
3 Navigate to org > gnome > desktop > wm > preferences.
4 Change the mouse-button-modifier to <Super>.

Note It is important to assign a valid key to mouse-button-modifier. Leaving that option blank
prevents the mouse from interacting with any windows.

See Also

More About
• “Create Simple RoadRunner Scene” on page 1-19
• “Camera Control in RoadRunner” on page 1-44
• “Manipulate Scene Objects” on page 2-14

2 RoadRunner Fundamentals

2-34

Choose a RoadRunner Tool
The RoadRunner toolbar contains a variety of tools for editing scenes. The tool that you select
determines the objects that you can select and edit in the scene editing canvas. In addition, certain
actions automatically change the active tool. For example, dragging certain types of assets from the
Library Browser into the scene adds that asset to the scene and automatically switches RoadRunner
to an appropriate tool for that asset.

Road Tools
Road tools are used to create and modify roads and their attributes.

Tool Description
Road Plan Tool Create and lay out roads.

Road Circle Tool Build closed circular loop road, such as for
creating roundabouts.

Cross Section Tool Manipulate banking, crowning, and curb shapes
at road cross-sections.

Road Height Tool Manipulate vertical profile of roads.

 Choose a RoadRunner Tool

2-35

Tool Description
Road Superelevation Tool Adjust superelevation (slope and banking angle)

for full width of road.

Road Chop Tool Chop single road into two connected roads.

Road Construction Tool Specify physical construction of road sections.

Road Speed Limits Tool Set speed limits along road sections.

Slip Road Tool Create onramps, offramps, and road splits.

Road Offset Tool Adjust connection between two end-to-end roads.

2 RoadRunner Fundamentals

2-36

Tool Description
Road Anchor Tool Define road anchors to place scenarios within

scenes (requires RoadRunner Scenario)

Junction Tools
Junction tools are used to modify junction (intersection) geometry and lane connectivity. In most
cases, junctions are initially created using the Road Plan Tool or Slip Road Tool. In advanced
situations, the Custom Junction Tool provides more explicit control over junction creation.

Tool Description
Custom Junction Tool Override RoadRunner automatic junction

functionality for advanced cases.

Corner Tool Adjust shape and materials of junction corners.

Junction Surface Tool Control how road elevations and cross-sections
influence interior triangulation of intersections.

Maneuver Tool Manipulate individual maneuver roads (paths)
within junction.

 Choose a RoadRunner Tool

2-37

Tool Description
Signal Tool Configure junction signalization and signal traffic

phases.

Lane Tools
Lane tools are used to create and edit lanes and their properties.

Tool Description
Lane Tool Delete lanes and update lane type and travel

direction.

Lane Width Tool Adjust lane widths along road.

Lane Offset Tool Adjust location of center lane of road.

Sidewalk Height Tool Modify sidewalk and curb heights.

2 RoadRunner Fundamentals

2-38

Tool Description
Lane Add Tool Add fully formed lanes along road.

Lane Form Tool Add forming or ending lane along road.

Lane Carve Tool Create tapering cut in lanes, such as for creating
dedicated turn lane in median.

Lane Chop Tool Cut single lane into two lanes.

Lane Split Tool Split lane lengthwise into two lanes.

Marking Tools
Marking tools are used to create and modify road paint, lane markings, and decals in the scene.

Tool Description
Lane Marking Tool Add linear markings to lane boundaries.

 Choose a RoadRunner Tool

2-39

Tool Description
Marking Point Tool Place point markings (stencils), such as arrows

and words, on road surfaces.

Marking Curve Tool Place straight or curved markings at arbitrary
locations.

Marking Polygon Tool Define areas of asphalt patches or repeated
marking stripes on roads and terrain surfaces.

Traffic Island Tool Create freeform traffic islands

Parking Tool Define parking spaces and other parking-related
markings.

Crosswalk And Stop Line Tool Add crosswalks and stop lines between corners at
intersections.

2 RoadRunner Fundamentals

2-40

Prop Tools
Prop tools are used to create and modify 3D props and road furniture, such as trees, signs, and
guardrails.

RoadRunner can import props from a variety of file formats and uses a rich set of tools to place props
in the scene. These tools are used to place a variety of different asset types, including Prop Model
Assets, Prop Set Assets, Sign Assets, and Extrusion Assets.

Tool Description
Prop Point Tool Place individual props in a scene and connect

them to other props.

Prop Curve Tool Place props and extrusions along free-form
curves.

Prop Polygon Tool Place props within arbitrarily shaped regions.

Prop Span Tool Place props and extrusions along road.

Sign Tool Modify custom signs, such as street name signs
and freeway billboards.

 Choose a RoadRunner Tool

2-41

Terrain Tools
Terrain tools are used to create and modify the surfaces around and between roads. For more details
on surfaces, see “How Surfaces Work in RoadRunner” on page 4-4.

Tool Description
Surface Tool Model surfaces around roads, such as walkways,

driveways, parking lots, and natural terrain.

GIS Tools
GIS tools are used to import and adjust a variety of common geographic information system (GIS)
files.

Tool Description
Aerial Imagery Tool Manage import and configuration of aerial

imagery files.

Elevation Map Tool Manage import and configuration of digital
elevation model (DEM) files.

Point Cloud Tool Manage import and configuration of lidar point
cloud files.

Vector Data Tool Manage import and configuration of vector data
files and explore shape attributes.

2 RoadRunner Fundamentals

2-42

Tool Description
OpenDRIVE Viewer Tool Visualize ASAM OpenDRIVE data for import.

Road CRG Tool Manage import and configuration of ASAM
OpenCRG® files.

Scene Builder Tool Generate 3D road models from HD Map data.

World Settings Tool Configure geographic position and size of
environment model for data import and export.

SD Map Viewer Tool Generate 3D road models from Zenrin Japan Map
API 3.0 (Itsumo NAVI API 3.0) data.

Utility Tools
These assorted utility tools enable you to measure distances, capture screenshots, and preview export
data.

 Choose a RoadRunner Tool

2-43

Tool Description
Measurement Tool Measure positions, distances, and angles in

scene.

Screenshot Tool Generate and save image of current camera view.

OpenDRIVE Export Preview Tool Visualize and validate ASAM OpenDRIVE export
of scene and load external ASAM OpenDRIVE
files.

Scene Export Preview Tool Preview scene geometry to be exported.

See Also

Related Examples
• “Point Editing” on page 2-65
• “Curve Editing” on page 2-66
• “Polygon Editing” on page 2-68
• “Tangent Editing” on page 2-70
• “Span Editing” on page 2-75
• “Region Graph Editing” on page 2-78

2 RoadRunner Fundamentals

2-44

RoadRunner Asset Types
Assets are 3D models, textures, GIS files, and other data that are shared by multiple RoadRunner
scenes. You can view and modify assets from the Library Browser. For information about how assets
are stored in a project, see “RoadRunner Project and Scene System” on page 2-2.

RoadRunner also supports a variety of file formats for developing your own assets. For more details,
see “Create, Import, and Modify Assets” on page 2-50.

RoadRunner comes installed with a small library of various assets to get you started. With a
“RoadRunner Asset Library Add-On” license, you can install hundreds of additional assets to use in
your scenes.

Texture and Material Assets
Material assets are used to define the visual properties of surfaces, sidewalks, lanes, and other
objects. Texture assets are image files, typically used as texture channels for material assets.

Asset Description
Texture Assets Define texture channels for material assets.

Material Assets Define visual properties of surfaces, sidewalks,
lanes, and other objects.

Prop Assets
Prop assets define 3D objects that you can place within a scene.

Asset Description
Extrusion Assets Define extruded geometry for features such as

walls, guard rails, and fences.

 RoadRunner Asset Types

2-45

Asset Description
Post Assets Define building support posts, such as for bridges

and overpasses.

Prop Model Assets Define external 3D model files to add to scene.

Prop Assembly Assets Define collection of prop instances stored as
single asset.

Prop Set Assets Define collections of props that have a random
distribution.

Sign Assets Define standard and custom street signs.

2 RoadRunner Fundamentals

2-46

Asset Description
Signal Assets Define dynamic traffic signal heads with lights.

Marking Assets
Marking assets define markings found on roads, such as crosswalks, lanes, and road stencils such as
arrows, text, and symbols.

Asset Description
Crosswalk Marking Assets Define crosswalk markings, such as color, width,

and spacing.

Lane Marking Assets Define lane markings, such as color, width, and
dash spacing.

Polygon Marking Assets Define space-filling road markings, such as
crosshatch and chevron markings.

 RoadRunner Asset Types

2-47

Asset Description
Stencil Marking Assets Define road paint features, such as arrows, text,

and symbols.

Road Assets
Road style assets are templates that specify the properties of new roads.

Asset Description
Road Style Assets Define templates that specify properties of new

roads.

GIS Assets
Geographic information system (GIS) assets carry georeferencing information, which you can use to
position these assets on the Earth. For information on finding GIS data resources that are compatible
with RoadRunner, see “Download GIS Data for Use in RoadRunner” on page 3-8.

Asset Description
Elevation Map Assets Add GIS raster elevation data to scene.

Aerial Image Assets Add GIS satellite and aerial imagery to scene for
visual reference.

2 RoadRunner Fundamentals

2-48

Asset Description
Vector Data Assets Add GIS shapefiles and other vector data to scene

for visual reference.

Point Cloud Assets Add aerial or vehicular point clouds to scene for
visual reference.

See Also

Related Examples
• “Create, Import, and Modify Assets” on page 2-50
• “RoadRunner Project and Scene System” on page 2-2
• “RoadRunner Asset Library Add-On”

 RoadRunner Asset Types

2-49

Create, Import, and Modify Assets
Assets are the materials, textures, props, and other 3D objects that are available in a RoadRunner
project and that can be added to a scene. To browse, create, and modify assets in a current project,
use the Library Browser. The Library Browser is divided into two panes:

• The left pane displays the directory structure within the Assets folder, enabling you to quickly
navigate the folder hierarchy.

• The right pane displays the contents of the currently selected folder. When you select an asset
from this pane, you can view its attributes from the Attributes pane and preview it in the asset
viewer.

Using these two panes, you can create and modify assets, manage asset files in your project, and add
assets to scenes.

Only files recognized by RoadRunner as assets are displayed. Other system files and auxiliary files in
the directory are not shown. For more details on the asset files contained in a project, see
“RoadRunner Project and Scene System” on page 2-2.

Create and Import Assets
Depending on the asset type, you can either create new assets for a project either directly in the
Library Browser or you can import files created outside RoadRunner into the Library Browser to
create RoadRunner assets.

2 RoadRunner Fundamentals

2-50

Create Asset Within RoadRunner

You can create some assets directly within the Library Browser, such as materials and road styles.
Follow these steps:

1 Navigate to the folder in the Library Browser where you want to create the new asset.
2 Right-click in the Library Browser and select New, then select (Asset Type). Alternatively,

select Assets, and then select the (Asset Type) menu option.
3 Specify a name and press Enter.

You can also:

1 Right-click the asset in the Library Browser and select Duplicate.
2 Specify a name for the new asset and press Enter.

You can use these steps only for assets created within RoadRunner, such as a material or road style
asset. If you want to duplicate an asset that depends on another file, such as a texture image or 3D
model, duplicate the dependent file only (not the rrmeta file) by using the file explorer for your
operating system.

Create Asset by Importing File Created Outside RoadRunner

Some assets depend on files created outside of RoadRunner, such as a texture image saved as a PNG
file or a 3D building model saved as an STL file, or a 3D tree saved as an FBX file. To create such
assets for use in RoadRunner, drag the dependent file into the Library Browser. Follow these steps:

1 Navigate to the folder in the Library Browser where you want to add the new asset.
2 In the file explorer window for your operating system, navigate to the location of the dependent

file (for example, the texture image or the 3D model).
3 Select the file (and any associated files or folders) in the file explorer.
4 Drag the file, and any associated files or folders, into the Library Browser.

 Create, Import, and Modify Assets

2-51

This operation copies, rather than moves, the selected files into the directory of the current project.

Alternatively, you can perform these steps by using the file explorer window by moving the files
somewhere under the Assets directory of your project. This option can be useful if you want to move
rather than copy the files, or if you want to use an external script to create assets in a project.

Modify Assets
The steps to modify an asset differ depending on the specific type of asset. For more details, refer to
the documentation for the specific asset type.

In most cases, you can modify an asset by following these steps:

1 Select the asset in the Library Browser.
2 View and modify the asset attributes displayed in the Attributes pane.

Some assets, such as Sign Assets, are modified using the 2D Editor pane.

Modifications made to an asset are saved only when you next save the project.

Reload Modified Assets

If you change an asset by using an external application, such as modifying a texture file using an
image editor, you can force RoadRunner to reload the asset. Right-click in the Library Browser and
select Update Assets. Alternatively, select Assets and then the Update Assets menu option.

Manage Assets
You can use the Library Browser to manage the assets in your project.

Rename Asset

1 Right-click the asset in the Library Browser and select Rename (or press F2).
2 Specify a new name and press Enter.

Move Assets or Folders

1 Select assets or folders in the Library Browser.
2 Click and drag the assets or folders to a different folder in either the left or right pane.

Moving an asset automatically updates asset references in the current scene, but other saved scenes
might still reference the old asset location. See “Find Moved Assets” on page 2-53.

Create New Asset Folder

1 Right-click in the Library Browser and select New, then Folder. Alternatively, select Assets,
then New, then Folder.

2 Specify a name and press Enter.

Delete Asset or Asset Folder

1 Select assets or folders in the Library Browser.

2 RoadRunner Fundamentals

2-52

2 Right-click and select Delete. Alternatively, select the Edit , then Delete menu option, or press
Delete.

Find Moved Assets

If an asset or asset folder has been moved or renamed, then existing scene files might still refer to
the old location. If a scene cannot find an asset, RoadRunner replaces references to that asset with a
visually distinct fallback asset (for example, props display as pink barrels, and textures display as
striped red and blue images).

If you encounter this situation, RoadRunner can search for the missing references and attempt to
relink them. Follow these steps:

1 Open the scene file containing the missing asset references.
2 Right-click in the Library Browser and select Update Assets. Alternatively, select the Assets ,

then Update Assets menu option.

This search finds moved assets only if the corresponding rrmeta file was also moved or renamed and
was left intact.

Select Assets

To select all the assets of a given type in a scene, follow these steps:

1 In the Library Browser, navigate to the folder that contains the asset.
2 Right-click the asset file and select Select in Scene.

RoadRunner selects all assets of that type in the scene and switches to the primary tool used to
select that asset. If you are already using a tool that can select the asset, then RoadRunner does
not switch tools.

 Create, Import, and Modify Assets

2-53

Note Selecting road style assets in a scene is not supported.

Visualize Assets
Using the asset viewer, you can visualize the currently selected asset in the Library Browser. By
default, the asset viewer appears below the Attributes pane when a single asset is selected in the
Library Browser. This image shows a sample material asset.

The asset viewer displays different asset types, such as 3D model assets and 2D image assets, in
different ways. If the selected asset type supports a 3D display, you can move the camera by using the
same controls listed in “Camera Control in RoadRunner” on page 1-44. Unlike the other render
windows, you do not need to hold Alt to adjust the camera in the asset viewer.

Change Asset Display Type

Some types of assets support additional viewing options. For example, Material Assets can be
displayed on different types of geometry, and Prop Model Assets can be displayed as a point, curve,
or collection.

To change the asset display type, in the top-right corner of the asset viewer, click the current display
type and select the new display type you want.

2 RoadRunner Fundamentals

2-54

Upgrade RoadRunner Asset Library
You can upgrade the assets of a project created with a previous version of RoadRunner to the current
version. You do not need to have a RoadRunner Asset Library license to upgrade the assets.
Upgrading the assets:

• Removes the replaced assets from the old location.
• Keeps customer assets (assets that are not in the Asset Library) intact.

Note The file locations of all built-in assets are reset to their default locations. Make a copy of your
project before upgrading if you have changed the file locations of any built-in assets.

To upgrade the RoadRunner Asset Library, follow these steps:

1 Click Upgrade Asset Library from the Assets menu.

 Create, Import, and Modify Assets

2-55

2 Select Also upgrade assets in existing Scenes and Scenarios if you want to upgrade the
assets in the existing scene or scenario file. Then, click Upgrade in the Upgrade Asset Library
dialog box.

3 Once you click Upgrade, you can see the progress of the up-gradation process.

4 Once the upgrade process completes, you see a message in the dialog box, which denotes the
successful completion of the upgrade. It also shows the number of assets added, the number of
assets updated, and the amount of memory used by the assets. The upgrade process does not fail
if no new assets are detected.

5 If you want to keep the assets in your scenes and scenarios intact, uncheck the Also upgrade
assets in existing Scenes and Scenarios in the Upgrade Asset Library dialog box. The assets
found in your scenes and scenarios that would otherwise be replaced are automatically moved to
a new folder.

2 RoadRunner Fundamentals

2-56

6 Once the upgrade process completes, you see a message in the dialog box, which denotes the
successful completion of the upgrade. It also shows the number of assets added, the number of
assets updated, and the amount of memory used by the assets. It also shows the number of
existing assets that are moved to a new folder Pre_R2022a_Assets'

See Also

Related Examples
• “RoadRunner Asset Types” on page 2-45
• “RoadRunner Project and Scene System” on page 2-2
• “Manipulate Scene Objects” on page 2-14

 Create, Import, and Modify Assets

2-57

Create, Import, and Modify Scene Assets
Scene Assets are collections of roads, intersections, props, and other 3D objects that are available in
a RoadRunner project and can be added to a scene to quickly build a complete environment. To
browse, create, and modify scene assets in a current project, use the Library Browser. The Library
Browser is divided into two panes:

• The left pane displays the directory structure within the Assets folder, enabling you to quickly
navigate the folder hierarchy.

• The right pane displays the contents of the currently selected folder. When you select an asset
from this pane, you can view its attributes from the RoadRunner Attributes pane and preview it
in the asset viewer.

Create Template Asset of Entire Scene
1 Open an existing scene or create a new scene in RoadRunner. Do not select any objects within

the main scene window.
2 Create a new folder named Templates in the Assets folder. If a Templates folder already

exists, you can select that folder instead.
3 From the Assets menu, select New > Scene Template to automatically add the current scene as

a template asset into the folder and the RoadRunner Asset Library of the current project.
4 Rename the scene with an appropriate name.

Using this method, you can create a variety of templates from existing scenes.

Create Template Asset from Selection
1 Open an existing scene or create a new scene in RoadRunner.

2 RoadRunner Fundamentals

2-58

2 Using the Selection tool, select a portion of the 3D scene from which to create a scene template.

3 Create a new folder named Templates in the Assets folder. If a Templates folder already
exists, you can select that folder instead.

4 From the Assets menu, select New > Scene Template to automatically add the current scene as
a template asset into the folder and in the RoadRunner Asset Library in the current project.

5 Name the scene template.

Add Template Asset to a Scene by Dragging
1 Point to the new template in the Library Browser. Click and hold to grab the template.
2 Drag the selected scene from the Library Browser into the scene and position it in the desired

location. The template, while selected, is visible in the 3D scene and follows the cursor.

 Create, Import, and Modify Scene Assets

2-59

3 Release the mouse button to add the template into the scene. The new object is automatically
selected by the Selection Tool.

4 You can reposition the template by dragging it to a new location, or use undo to remove the
template and repeat the process of adding it to the scene in a different location.

Add Template Asset to Scene Using Copy Paste
1 Open an existing scene or create a new scene in RoadRunner.
2 Select a portion of the 3D scene from which to create a scene template.
3 Press Ctrl+C or select Edit > Copy. If a scene template can be created from your selection,

RoadRunner stores the selection in the active clipboard for pasting.
4 Press Ctrl+V or select Edit > Paste to paste the template in your scene. The objects in the

selection paste to the exact locations from which they are copied.
5 To move the objects to a new location, press T or select View > Translate to enable the translate

manipulator.
6 Click and drag one of the translation axes to move the pasted objects to a new location.

See Also

2 RoadRunner Fundamentals

2-60

Resolve Geometry Issues
You can enable visualization of geometric issues related to triangulation. To modify geometry issue
settings, use the Geometry Issue Settings dialog box under the Tools menu.

Angle Threshold
The Angle Threshold parameter controls the angle threshold (in degrees) at which geometric issues
are displayed. This angle directly translates into the angle between adjacent faces of the road mesh.
These images show the same road section with different Angle Threshold values used for displaying
geometric issues. As the Angle Threshold value increases, the number of issues that are detected
decreases.

Angle Threshold: 1 degree

 Resolve Geometry Issues

2-61

Angle Threshold: 10 degrees

Angle Threshold: 30 degrees

Show Edge Visualization
The Show Edge Visualization parameter enables visualization of the geometric issues. This toggle
is applied when the dialog box is closed and corresponds directly to the View > Geometric Issues
menu option.

2 RoadRunner Fundamentals

2-62

Edge visualization disabled

Edge visualization enabled

Detect Geometry Issues
Running Detect Geometry Issues prints the current state of the geometric issues to its own Output
pane, and to the RoadRunner standard Output pane. Each issue contains its own URL that focuses
the camera on each issue.

 Resolve Geometry Issues

2-63

2 RoadRunner Fundamentals

2-64

Point Editing

Some RoadRunner objects, such as prop instances, are modeled as points. This topic provides
common steps to create, delete, and modify these point instances.

For general information about selecting and deleting objects, see “Design Scenes”.

Create a New Point
1 Select the point tool that corresponds to the type you want to create (for example, select the

Prop Point Tool for editing prop point instances).
2 Some tools will require an appropriate asset to be selected in the Library Browser before a

curve can be created (for example, select Prop Model Assets if you are creating a prop
instance).

3 Right-click to create a point. The new point is automatically assigned to the selected asset.
4 Optional: Continue holding the mouse button and drag to move the point after initial creation.

Move a Point
1 Select the point tool that corresponds to the type you want to modify (for example, select the

Prop Point Tool for editing prop point instances).
2 Click and drag a point to move it to a new location.

 Point Editing

2-65

Curve Editing

Some RoadRunner data models are built on top of curve sequences, including roads, prop curves, and
marking curves. This topic provides common steps to create, delete, and modify these curve
instances.

For general information about selecting and deleting objects, see “Design Scenes”.

Create a New Curve
1 Select the curve tool that corresponds to the type you want to create (for example, select the

Marking Curve Tool if you want to build a marking curve).
2 Some tools will require an appropriate asset to be selected in the Library Browser before a

curve can be created (for example, select Lane Marking Assets to create marking curves).
3 Ensure that no objects are selected (for example, by selecting Edit and then Deselect All in the

menu bar).
4 Right-click (and optionally drag) to create a curve with a single starting point. The new curve will

automatically be assigned the selected asset.
5 Right-click (and optionally drag) to extend the curve by adding additional control points.

Extend a Curve at Its Ends by Adding Control Points
1 Select the curve tool that corresponds to the type you want to modify (for example, select the

Marking Curve Tool to build a marking curve).
2 Select the curve you want to edit.
3 Click a control point at the end that you want to extend.
4 Right-click (and optionally drag) to add an additional control point.

2 RoadRunner Fundamentals

2-66

Add Control Points to the Interior of a Curve
1 Select the curve tool that corresponds to the type you want to modify (for example, select the

Marking Curve Tool to build a marking curve).
2 Select the curve you want to edit.
3 Right-click (and optionally drag) the curve at the location where you want to insert a new control

point.

Move a Control Point
1 Select the curve tool that corresponds to the type you want to modify (for example, select the

Marking Curve Tool to build a marking curve).
2 Select the curve you want to edit.
3 Click and drag a control point to move it to a new location.

Change the Tangents of a Curve
See “Tangent Editing” on page 2-70.

 Curve Editing

2-67

Polygon Editing

Some RoadRunner data models are polygon-based, such as prop and marking polygons. This topic
provides common steps to create, delete, and modify these polygon instances.

For general information about selecting and deleting objects, see “Design Scenes”.

Create a New Polygon
1 Select the polygon tool that corresponds to the type you want to create (for example, select the

Marking Polygon Tool to build a marking polygon).
2 Some tools require an appropriate asset to be selected in the Library Browser before a polygon

can be created (for example, select Polygon Marking Assets if you are creating marking
polygons).

3 Ensure that no objects are selected (for example, by selecting Edit and then Deselect All from
the menu bar).

4 Right-click (and optionally drag) to create a polygon with a single starting point. The new
polygon will automatically be assigned the selected asset.

5 Right-click (and optionally drag) to extend the polygon and add additional control points.

Add Control Points to a Polygon
There are two ways to add control points to a polygon.

Insert a Control Point Next to an Existing Point

1 Select the polygon tool that corresponds to the type you want to modify (for example, select the
Marking Polygon Tool to build a marking polygon).

2 Select the polygon you want to edit.
3 Select a control point next to the point you want to add.
4 Right-click (and optionally drag) to add additional control points.

2 RoadRunner Fundamentals

2-68

Insert Control Points by Splitting a Polygon Edge

1 Select the polygon tool that corresponds to the type you want to modify (for example, select the
Marking Polygon Tool if you want to build a marking polygon).

2 Select the polygon you want to edit.
3 Right-click (and optionally drag) the polygon edge where you want to insert a new control point.

Move a Control Point
1 Select the polygon tool that corresponds to the type you want to modify (for example, select the

Marking Polygon Tool to build a marking polygon).
2 Select the polygon you want to edit.
3 Click and drag a control point to move it to a new location.

Change the Tangents of a Polygon
See “Tangent Editing” on page 2-70.

 Polygon Editing

2-69

Tangent Editing

Some RoadRunner data models are built on top of curves and curve sequences, including roads, prop
curves and polygons, marking curves and polygons, and the terrain surface graph. The control points
of these curves contain tangents that can be adjusted to smooth or kink the resulting boundaries.
This topic provides common steps for editing tangents and enforcing tangent continuity.

Adjust a Tangent
1 Click the parent object to expose the tangent views.

Note For some data types, such as road height profiles, the tangents are exposed once the
parent is selected.

For other data types, such as curves or polygons, this might require clicking the parent object
first to expose the control points.

2 Click the end point of the tangent handle.

2 RoadRunner Fundamentals

2-70

3 Click and drag to set the direction and scale of the tangent.

Make Tangents Continuous
To automatically enforce continuity, use the Connect Tangents operation:

1 Click the parent object to expose the tangent views.

 Tangent Editing

2-71

Note For some data types, such as road height profiles, the tangents are exposed once the
parent is selected.

For other data types, such as curves or polygons, this might require clicking on the parent object
first to expose the control points.

2

Click the Connect Tangents button.

Tangents will now be enforced, even through additional edits.

2 RoadRunner Fundamentals

2-72

Make Tangents Discontinuous
To remove automatic continuity constraints, use the Disconnect Tangents operation:

1 Click the parent object to expose the tangent views.

Note For some data types, such as road height profiles, the tangents are exposed once the
parent is selected.

For others, such as curve or polygons, this might require clicking the parent object first to expose
the control points.

2

Click the Disconnect Tangents button.

 Tangent Editing

2-73

Curve Tangents
Point tangents views in RoadRunner Scenario can take on of the four states:

• Automatic continuous
• Automatic linear
• Manual continuous
• Manual linear

The default tangent state is automatic continuous. Automatic states update the tangents of the
control points as their adjacent points' are updated. Manual states retain tangents and are not
recomputed when the control points adjacent to it are updated. In the Prop Curve Tool, tangents
remain automatic until the tangent is explicitly modified using the green control point handles. After
that, the tangents become manual.

See Also

Related Examples
• “Choose a RoadRunner Tool” on page 2-35

2 RoadRunner Fundamentals

2-74

Span Editing

Various attributes are represented as parametric spans along lanes, roads, and other objects. This
topic provides common steps to create, delete, and modify these span instances. Various tools use
span editing concepts, such as the Lane Marking Tool, Prop Span Tool, or Road Construction
Tool.

Span Overview
Span-based attributes are defined by the following components.

Parent Object

Span-based attributes are defined parametrically along a curve-based parent object. Typically, the
parent object is either a road (as in the Road Construction Tool) or a lane (as in the Lane Marking
Tool).

Span Nodes

Span nodes (red circles) selected in the Lane
Marking Tool. These nodes indicate locations
where the marking type changes along the lane.

Span nodes (red lines) selected in the Road
Construction Tool. These nodes indicate where
bridges start and end along a road.

Span nodes are parametric objects along a parent curve that define where attribution changes. The
visual representation of nodes differs depending on the tool (as shown in the previous images).

Span nodes can be moved along the parent curve. Nodes can also be added along a curve, and
existing nodes can be deleted.

Node locations are automatically updated when the parent curve is modified (for example, when the
parent road's shape is changed).

 Span Editing

2-75

Span End Nodes

Span end nodes selected in the Road Construction Tool.

Span end nodes are a special type of span node that lie at the beginning and end of the parent curve.
For most types of span-based attributes, these span end nodes are automatically created and cannot
be deleted.

Spans

Span selected in the Lane Marking Tool. This
span defines the lane marking type between two
nodes.

Span selected in the Road Construction Tool.
This span defines the construction type (for
example, bridge) between two nodes.

A span is a range along a parent curve bounded by two span nodes. For most types of span-based
attributes, the span is automatically created between the span end nodes and cannot be deleted.

Select a Span or Span Node
The steps to select a span differ slightly depending on the tool, but the steps are typically similar to
the following.

1 Select the parent object containing the span (typically either a road or a lane on a road).
2 Select the desired span or span node.

Create a New Span Node
New span nodes are created by splitting a span into two spans.

1 Select the parent object containing the span.
2 Right-click an existing span at the location where you want to insert the new node.

Note In most cases, any attributes stored in the span are copied into the two new spans.

2 RoadRunner Fundamentals

2-76

Edit Attributes of a Span or Span Node
1 Select a span or span node.
2 Adjust the properties in the Attributes pane.

Alternatively, for asset-based attributes such as in the Lane Marking Tool and Prop Span Tool,
click and drag a compatible asset type from the Library Browser to the span or span node.

Note Some span-based attributes only store data on the spans, others only store data on the span
nodes, and some store data on both.

Span nodes always have a "Distance" attribute that defines the distance of the node along the parent
curve.

Move a Span Node
1 Select the parent object containing the span.
2 Click and drag the node along the parent curve.

Alternatively:

1 Select the parent object containing the span.
2 Select the span node.
3 In the Attributes pane, adjust the Distance attribute.

Note Most span nodes cannot be moved past another node, and must remain a minimum distance
from surrounding nodes.

Delete a Span Node
1 Select the parent object containing the span.
2 Select the span node.
3 Delete the span node.

Tips for Deleting Nodes
• In most cases, the span end nodes (the nodes at the end of the parent curve) cannot be deleted.
• Deleting a span node combines the two attached spans into a single span. In most cases, the

single span receives the attributes of the longer span. The shorter span is removed.

 Span Editing

2-77

Region Graph Editing

Some RoadRunner data models are built on top of graphs of curve-bounded regions. This topic
provides common steps to create, delete, and modify these region graphs.

Many of the editing concepts for region graphs are similar to the concepts for “Design Scenes”. For
example, you can create, edit, and delete curve-based graph edges that behave like most curves in
RoadRunner.

Region graphs differ in two regards:

• Edge Connectivity — Graph edge curves can be connected end-to-end.
• Regions — Whenever a closed loop of graph edges is formed, a region is created in the interior.

Refer to the “Design Scenes” page for general information about selecting and deleting objects.

Create a Graph Edge Curve
1 Select the graph region tool that corresponds to the type you want to create (for example, select

the Surface Tool if you want to edit surfaces).
2 If you want to start the new edge at an existing node, select the existing node. Otherwise:

a Ensure that no objects are selected (for example, by using the Edit > > Deselect All option
in the menu bar).

b Right-click (and optionally drag) to create an initial graph node.
3 Optional: Move the pointer over an existing node if you want to end the curve at that node.
4 Right-click (and optionally drag) to create a second graph node and a graph edge curve in

between.

Split a Graph Edge Curve
1 Select the graph region tool that corresponds to the type you want to create (for example, select

the Surface Tool to edit surfaces).

2 RoadRunner Fundamentals

2-78

2 Right-click a graph edge curve to split it into two curves.

Move a Graph Node
1 Select the graph region tool that corresponds to the type you want to create (for example, select

the Surface Tool to edit surfaces).
2 Click and drag the graph node you want to move.

Change the Tangents of a Graph Edge Curve
See “Tangent Editing” on page 2-70.

Create a Region
Regions are automatically created whenever a closed loop of graph edges is formed:

Sequence of connected graph edge curves (no
region)

Region is automatically created when the open
ends are connected.

Split a Region
Each closed loop of graph edges automatically forms a region, so one region can be split into two by
forming a path of graph edge curves between two of the points on the region exterior:

Single region Region is automatically split into two regions
when two closed loops are formed.

 Region Graph Editing

2-79

Regions With Holes
Only the Surface Tool fully supports holes.

2 RoadRunner Fundamentals

2-80

Merge Multiple RoadRunner Scenes
In RoadRunner, scenes can represent anything from a small area, such as a single intersection, to a
large area, such as a portion of a city. A scene can contain multiple roads, intersections, road
markings, props, terrain sections, and various other scene aspects.

In RoadRunner, you can create many scenes within the same project, and the scenes can share assets
within the project. A scene file contains an area that includes objects such as roads, surfaces, props,
and other scene aspects. Individual scenes are saved as .rrscene files, typically in the Scenes
folder of a project. For a more complete understanding of creating projects and scenes, see
“RoadRunner Project and Scene System” on page 2-2.

Because large scenes can take several minutes to load, and working on such scenes single-handedly
can become cumbersome and time-consuming, you can improve your efficiency by dividing a large
scene into multiple smaller scenes. Once work on the smaller scenes is complete, RoadRunner
enables you to merge the separate scene files into a single scene file. When you merge a scene
directly from a scene file into a currently open scene, RoadRunner automatically adjusts the location
of the incoming scene to match the current scene. This functionality enables multiple users, working
together on a large scene, to can plan out how to divide a scene ahead of time.

When merging scenes, RoadRunner considers the geolocation of the scenes. In RoadRunner, the
scenes can have a latitude-longitude pair set as their world origin. If the scene has a latitude-
longitude pair set, then RoadRunner takes that into account and positions the roads, props, and
surfaces of the incoming scene relative to that latitude-longitude pair. For more details on the local
coordinate system and georeferencing in RoadRunner, see “Coordinate Space and Georeferencing”
on page 2-10.

Merge Two Non-Geolocated Scenes
To merge two scenes that do not have specified world origins, follow these steps:

1 Open an existing scene in RoadRunner.

 Merge Multiple RoadRunner Scenes

2-81

2 From the File menu, select Open and Merge Scene File. Alternatively, you can press Ctrl
+Shift+O.

2 RoadRunner Fundamentals

2-82

3 Select the scene you want to merge into your current scene, and click Open.
4 RoadRunner places the selected scene in the current scene.

 Merge Multiple RoadRunner Scenes

2-83

Merge Two Geolocated Scenes
To merge two scenes that have specified world origins, follow these steps:

1 Open an existing scene in RoadRunner. If the scene does not already have a specified world
origin, set one by using the World Settings Tool. To view the world origin details for this scene,

on the RoadRunner toolbar, click the World Settings Tool . The Attributes pane
and the editing canvas show the latitude and longitude values for the world origin of this scene.

2 RoadRunner Fundamentals

2-84

2 From the File menu, select Open and Merge Scene File. Alternatively, you can press Ctrl
+Shift+O.

 Merge Multiple RoadRunner Scenes

2-85

3 Select the other geolocated scene you want to merge into your current scene, and click Open.
The editing canvas shows the selected scene to be merged along with its world origin details.

2 RoadRunner Fundamentals

2-86

4 If the world origins of both the scenes are close enough to one another, RoadRunner merges the
scenes and locates them appropriately, using the world origin of the current scene as the base.

5 If the world origin of the incoming scene is located too far away from the world origin of the
current scene, a dialog prompts you to either cancel the operation, or ignore the incoming world
origin.

 Merge Multiple RoadRunner Scenes

2-87

6 If you select Ignore Incoming Origin, RoadRunner merges the incoming scene into the current
scene based on the local coordinates of the incoming scene. If you select Cancel, RoadRunner
stops the merge operation.

Merge Geolocated Scene to Non-Gelocated Scene
To merge a geolocated scene into a non-geolocated scene, follow these steps:

1 Open an existing scene in RoadRunner. Ensure that the scene does not have a specified world
origin. To view the world origin details for this scene, in the RoadRunner toolbar, click the World

Settings Tool . The Attributes pane and the editing canvas show whether the
scene has latitude and longitude values set for the world origin.

2 RoadRunner Fundamentals

2-88

2 From the File menu, select Open and Merge Scene File. Alternatively, you can press Ctrl
+Shift+O.

 Merge Multiple RoadRunner Scenes

2-89

3 Select the other scene you want to merge into your current scene, and click Open. The editing
canvas shows the selected scene to be merged. Verify that the scene has a specified world origin
by using the World Settings Tool. The Attributes pane and the editing canvas show whether
the latitude and longitude values of the world origin for this scene have been specified.

2 RoadRunner Fundamentals

2-90

4 A dialog box prompts you to either ignore the incoming world origin, set the current scene to use
the incoming world origin, or cancel the operation.

5 If you select Ignore all incoming origins and click Apply World Origin Settings, RoadRunner
merges the incoming scene into the existing scene using only local coordinates. The resulting
merged scene does not have a specified world origin.

 Merge Multiple RoadRunner Scenes

2-91

6 If you select the world origin of the incoming scene file and click Apply World Origin Settings,
RoadRunner merges the incoming scene into the existing scene, and assigns the world origin of
the incoming scene to the resulting merged scene.

2 RoadRunner Fundamentals

2-92

Limitations
• RoadRunner does not enable you to merge scenes from different projects by default. To merge a

scene located in a different project, you must first copy the scene to the same location relative to
the .rrproj file.

See Also
“Create Simple RoadRunner Scene” on page 1-19

 Merge Multiple RoadRunner Scenes

2-93

Graphics and Startup Issues

System Requirements
RoadRunner is primarily a 3D graphics application. It requires a graphics card with support for
OpenGL version 3.2 or higher.

Check that your system meets the minimum RoadRunner System Requirements on page 1-3.
RoadRunner might still work with some lower specification system version, but you might experience
poor performance.

Graphics Drivers
If you are experiencing rendering issues or crashes on startup, check to make sure that you are
running the latest graphics drivers for your system. Some computer manufacturers install custom or
unstable drivers. Windows Update has also been known to automatically install problematic graphics
drivers.

Downloading drivers directly from your graphics card manufacturer is recommended. Common
graphics card manufacturers include:

• NVIDIA (drivers download page)
• AMD (drivers download page)
• Intel (drivers download page)

On Linux, if your graphics card manufacturer does not supply drivers for Linux, try updating your
Mesa graphics drivers.

If you are unsure which type of graphics card you have, you can often determine that by visiting your
computer manufacturer's web page and searching for drivers for your system. This search usually
involves entering a model (or serial) number or installing an autodetection application.

On Windows, you can determine which graphics cards you have installed by following these steps:

1 Click the Start button and type Run.
2 Type dxdiag and press Enter.
3 Inspect the Name and Manufacturer on the Display tabs. You might have multiple graphics

cards installed, so inspect each listed Display tab.

2 RoadRunner Fundamentals

2-94

https://www.nvidia.com/Download/index.aspx
https://www.amd.com/en/support
https://www.intel.com/content/www/us/en/support/products/80939/graphics.html
https://docs.mesa3d.org/systems.html

Laptops
RoadRunner can run on laptops with sufficiently powerful graphics cards. Newer laptops with low-
powered graphics cards (such as Intel embedded graphics chips) might still be able to run
RoadRunner acceptably.

To conserve battery life, modern laptops often have two graphics cards, for example, higher-powered
NVIDIA graphics combined with lower-powered Intel embedded graphics. In these cases,
RoadRunner requests to use the higher-power graphics card, but there is no guarantee that your
system will obey that request.

If your laptop has multiple graphics cards (often true if your laptop advertises an NVIDIA or AMD
graphics cards), then it is recommended that you check that your system provides the higher-power
graphics card to RoadRunner.

The steps for this process differ depending on the laptop manufacturer, graphics driver, and other
factors. For additional help, see these links:

• https://www.techadvisor.com/article/727646/how-to-set-a-default-graphics-
card.html

• https://www.nvidia.com/content/Control-Panel-Help/vLatest/en-us/
mergedProjects/nv3d/Manage_3D_Settings_(reference).htm (see "Program Settings"
section; for RoadRunner, select the high-performance NVIDIA processor option)

Remote Desktops
If you are using RoadRunner while connected to a remote desktop, you might encounter performance
issues. To resolve these issues, consider using one of these options.

NVIDIA Remote Desktop Acceleration

If you are using Microsoft® Remote Desktop on newer NVIDIA GeForce drivers, follow the procedure
described in the "Accelerate Windows Remote Desktop" section of https://
developer.nvidia.com/physx-sdk.

 Graphics and Startup Issues

2-95

https://www.techadvisor.com/article/727646/how-to-set-a-default-graphics-card.html
https://www.techadvisor.com/article/727646/how-to-set-a-default-graphics-card.html
https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk

Chrome Remote Desktop

Chrome™ Remote Desktop from Google® provides a solution for remote access that supports newer
OpenGL applications. For details, see https://remotedesktop.google.com/.

Video Card Connection
On desktops, you might also want to check that your monitor is connected to a video card, rather
than to a low-powered graphics card (also called "onboard" or "integrated" graphics). Trace your
monitor cable to make sure that it is not plugged into the built-in graphics port, but rather into a
video card in one of the expansion slots.

2 RoadRunner Fundamentals

2-96

https://remotedesktop.google.com/

Further Support
If the previous information does not resolve your issue, report your issue to MathWorks Technical
Support. It is helpful to include your log files. For more details, see “Obtain RoadRunner Log Files”
on page 2-98.

 Graphics and Startup Issues

2-97

Obtain RoadRunner Log Files
While debugging RoadRunner issues, MathWorks Technical Support might request your RoadRunner
log files. Log files are all messages, warnings, and errors related to RoadRunner that are printed to
the Output pane. This image shows a sample Output pane with logged information.

This information can be helpful for debugging certain problems, especially problems related to
loading asset files.

Locate Log Folder
To obtain the log from the current RoadRunner session, from the RoadRunner menu, select Tools >
Debug > Open Log Folder

To locate the log folder that contains log files for all RoadRunner sessions, in Windows, click Start,
and then type:

%appdata%\MathWorks\RoadRunner\<release version>\Logs

To locate log files in Linux, navigate to this folder:

~/.local/share/MathWorks/RoadRunner/<release version>/Logs

Provide Log File Contents to MathWorks Technical Support
1 Locate the log folder (see previous section).
2 Zip (or tar) the contents of the log folder.
3 Attach the zip file to a new or existing ticket for MathWorks Technical Support.

2 RoadRunner Fundamentals

2-98

See Also

Related Examples
• “Graphics and Startup Issues” on page 2-94

 Obtain RoadRunner Log Files

2-99

Import Data

• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Decompress LAZ Files” on page 3-5
• “Download GIS Data for Use in RoadRunner” on page 3-8
• “Importing ASAM OpenCRG Files” on page 3-10
• “Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data” on page 3-12
• “Import Custom Data Using RoadRunner HD Map” on page 3-21
• “Build Roads Using OpenStreetMap Data” on page 3-37

3

Importing ASAM OpenDRIVE Files
RoadRunner can visualize and import OpenDRIVE 1.4, OpenDRIVE 1.5, and ASAM OpenDRIVE 1.6
data, converting the data to the internal road format during import. The ASAM OpenDRIVE data is
visualized before import. The import option is designed to enable editing of ASAM OpenDRIVE files.

Import ASAM OpenDRIVE File and Build Scene
1 In RoadRunner, add the ASAM OpenDRIVE file to a folder in the Library Browser.
2 Drag the ASAM OpenDRIVE file from the Library Browser into the scene. This action switches

to the OpenDRIVE Viewer Tool.

3 In the 3D scene, click the imported file to select it.
4 In the Attributes Pane, click Set Custom Projection or select an appropriate Projection Mode

from the dropdown menu to correctly position the latitude and longitude of ASAM OpenDRIVE
data in the RoadRunner scene.

The Set Custom Projection option opens a dialog box to configure the Tranverse Mercator
projection. This option is recommended when the projection details for the imported ASAM
OpenDRIVE data are unknown. Alternatively, you can select one of these available Projection
Modes from the dropdown menu.

Projection Mode Description
No Projection This projection mode extracts the X, Y

coordinates of the points from the ASAM
OpenDRIVE data directly and places them on
the RoadRunner scene. This mode is not
recommended but can be used to import
synthetic scenes (i.e., scenes that are not
based on any real-world reference).

Translate Only This projection mode imports the ASAM
OpenDRIVE data such that the latitude
and longitude of 0, 0 position in the
imported data is positioned in the
corresponding latitude and longitude
position in the RoadRunner scene. ASAM
OpenDRIVE <geometry> remains unaffected
so the curvature information is preserved.
This projection mode is recommended for
synthetic scenes where the <geometry>
information needs to be preserved
accurately. It is also recommended for real-
world scenes where the projection details for
the ASAM OpenDRIVE data are unknown but
the latitude and longitude of 0, 0
position can be determined.

3 Import Data

3-2

Projection Mode Description
Full Projection In this projection mode, the latitude and

longitude of any point in the imported
ASAM OpenDRIVE data correspond to the
latitude and longitude of the same point
in the RoadRunner scene. The ASAM
OpenDRIVE data is reprojected to exist in
RoadRunner's local Tranverse Mercator
projection. This projection mode is highly
recommended for scenes based on real-world
data or ASAM OpenDRIVE files containing
projection information in the header. It is
not needed for synthetic scenes.

5 In the toolbar on the left, click the Build Scene button.

6 In the Import ASAM OpenDRIVE dialog box, select the import options, such as which objects,
signals, and markings to build in the scene.

The OpenDRIVE importer uses a configuration XML file to map ASAM OpenDRIVE <object>,
<signal>, and <marking> entries to RoadRunner assets. This configuration file is also used to
define the correlation during export. For more details, see “Convert Asset Data Between
RoadRunner and ASAM OpenDRIVE” on page 5-16.

The table shows the import options that you can select.

Option Description
Import signals Select this option to map all <signal>

entries to signals or signs.
Import props Select this option to map all <object>

entries to props or markings.
Use hOffset relative to orientation Select this attribute to import the

<hOffset> (heading offset) values of
<signal> entries as being relative to
<orientation>, which is the direction of
travel of the road that the signal applies to.
By default, the heading offset is relative to
the heading of the road, regardless of its
direction of travel

7 Click Import. The Import ASAM OpenDRIVE Results dialog box displays any warnings and
errors that occurred during import. Close this dialog and inspect the imported scene by clicking
to a different tool.

Explicit Lane Direction Priority
This section states the priority for how lane direction is set is when importing ASAM OpenDRIVE files
to RoadRunner. In decreasing order of priority:

 Importing ASAM OpenDRIVE Files

3-3

1 If an ASAM OpenDRIVE driving lane has itstravelDir attribute set to forward, backward, or
bidirectional , use that as the travel direction for that lane. Note that travelDir is a custom
RoadRunner attribute that is unlikely to be found in OpenDRIVE files from 3rd party vendors.

2 If an ASAM OpenDRIVE road has its rule attribute set to RHT (right-handed traffic) or LHT(left-
handed traffic), set the travel direction of the lanes appropriately for that traffic rule (e.g. RHT
would indicate left lanes backward, right lanes forward).

3 Otherwise, set the lane direction to undirected.

Limitations
General

• If no zOffset is defined for a <signal> element in ASAM OpenDRIVE, RoadRunner places the
imported sign or signal directly on the road surface.

• RoadRunner road plan geometry requires that segments (line, arc, clothoid, or parametric cubic)
be continuous. During import, RoadRunner might define some ASAM OpenDRIVE data as a series
of <line> segments that are mapped to a continuous curve.

• During import, RoadRunner converts the ASAM OpenDRIVE geometry type <poly3> to
<paramPoly3>.

• RoadRunner roads cannot connect to themselves. Import ignores ASAM OpenDRIVE connections
that connect a road to itself.

Specific to OpenDRIVE 1.5 / ASAM OpenDRIVE 1.6

• RoadRunner does not import the virtual junctions and virtual connections specified in ASAM
OpenDRIVE.

• If segments of serially connected roads are overlapping in ASAM OpenDRIVE, then RoadRunner
ignores the overlapping segments of the roads and imports the roads as disjoint roads.

• RoadRunner ignores the lateral offset <sway> specified for roadMark entries in ASAM
OpenDRIVE. The imported road markings follow the lane border as if no <sway> is specified.

• RoadRunner ignores the object markings and object borders described in ASAM OpenDRIVE, and
does not import the <markings> and <border> elements specified within an <object> element.

• RoadRunner does not import the id, fillType, outer, and laneType attributes for an object
outline described in ASAM OpenDRIVE.

• If there are multiple <outline> entries for an <object> element, RoadRunner exports only the
last <outline> entry and ignores the rest.

See Also
OpenDRIVE Viewer Tool | OpenDRIVE Export Preview Tool

More About
• “Export to ASAM OpenDRIVE” on page 5-24

3 Import Data

3-4

Decompress LAZ Files
RoadRunner software does not support some LAZ files, resulting in this error: "The LAZ schema
is not recognized". To resolve this issue, you can decompress the LAZ file into an LAS file.

Decompression Process
1 To get started, on Windows, get the latest version of LASzip (found here). To get started on Linux,

build an executable for your operating system.
2 For both operating systems, run the LASzip executable.

Tip LASzip can sometimes have strange behavior when clicking or selecting in the interface. To
fix this issue, try maximizing the LASzip window or increasing the window size.

3 Click browse.

4 Find the desired LAZ file on your system. You can go to a specific directory using the directory
field and clicking go.

 Decompress LAZ Files

3-5

https://rapidlasso.com/laszip/

Tip To add multiple LAZ files, you can use the wildcard field to specify which types of files to
add. Then click add. This action adds all the files fitting that wildcard in the currently browsed
directory.

5

6 Adjust settings for output and processor usage in the upper-right corner of the window. Then
click Decompress.

3 Import Data

3-6

7 Click Start to run the decompression.

8 Once the RUN window closes, the decompression is complete. Assuming default settings, you can
find your LAS files beside your LAZ files in the same directory.

 Decompress LAZ Files

3-7

Download GIS Data for Use in RoadRunner
When designing a scene based on a real-world location, you can use imported geographic information
system (GIS) data as a visual reference. The process for importing the data into RoadRunner is the
same as importing any other data, regardless of where the data was obtained.

RoadRunner supports several different formats. For lists of supported formats for each type of GIS
data, refer to the GIS asset documentation:

• Elevation Map Assets
• Aerial Image Assets
• Vector Data Assets
• Point Cloud Assets

The most common file formats are:

• Raster data (satellite imagery and elevation), such as GeoTIFF and JPEG 2000
• Point cloud data, such as lidar data in LAZ and LAS formats

Choose USGS Interface for Downloading GIS Data
The U.S. Geological Survey (USGS) provides freely available GIS data for much of the United States.
Coverage and quality varies depending on the data type and location.

This table shows the USGS interfaces from which you can access GIS data.

Interface Link Interface Name
https://apps.nationalmap.gov/
downloader/#/

The National Map (preferred)

https://apps.nationalmap.gov/viewer/ The National Map - Advanced Viewer
https://earthexplorer.usgs.gov/ EarthExplorer

Each USGS interface has a different user interface for selecting locations and data sets and can
contain different data sets. When finding data for a specific project, best practice is to check all of the
USGS interfaces.

Download GIS Data
This example shows how to download data from The National Map.

1 Find your area of interest by using the map interface.
2 In the Datasets pane, select one or more data sources. After you select a data source, you can

click Show Availability to display the coverage of that data source. The table shows the
recommended data sources to use for each type of GIS data.

3 Import Data

3-8

https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/viewer/
https://earthexplorer.usgs.gov/

Type of GIS Data Recommended Data Source
Elevation data Elevation Products

One meter or 1/9 arc-second is
recommended, but those options are not
available in some locations.

Lidar data Elevation Source Data

Select the lidar point cloud (LPC) option.
Imagery data Imagery - NAIP Plus

3 Click Search Products and, in the returned results, select the download link in a result to
download that data.

4 Drag the downloaded data into the RoadRunner Library Browser to use as a visual reference
when creating scenes. Some data might require downloading multiple tiles to cover your area of
interest. For more details, see “Create Roads Around Imported GIS Assets” on page 1-57.

See Also
World Settings Tool | Aerial Imagery Tool | Elevation Map Tool | Point Cloud Tool | Vector
Data Tool

Related Examples
• “Create Roads Around Imported GIS Assets” on page 1-57
• “Decompress LAZ Files” on page 3-5
• “Coordinate Space and Georeferencing” on page 2-10

 Download GIS Data for Use in RoadRunner

3-9

Importing ASAM OpenCRG Files
ASAM OpenCRG is an open standard that enables you to specify road surface data using the curved
regular grid (CRG) format. You can link CRG data with road network data specified using an ASAM
OpenDRIVE file. Using RoadRunner, you can import data from an ASAM OpenCRG V1.2.0 file, assign
it to a road segment in the scene, and visualize road surface variations using a colormap.

Note You cannot edit data within ASAM OpenCRG files using RoadRunner.

Import ASAM OpenCRG File
You can import an ASAM OpenCRG file with or without an ASAM OpenDRIVE file. When you import
an ASAM OpenCRG file with an ASAM OpenDRIVE file, RoadRunner can build a scene by integrating
CRG data with the road network data specified by the ASAM OpenDRIVE file. Alternatively, you can
import an ASAM OpenCRG file independently and assign the CRG data to the desired road segment in
a scene.

Import ASAM OpenCRG File with ASAM OpenDRIVE File

Follow these steps to build a scene and visualize CRG data by importing an ASAM OpenDRIVE file
that references one or more ASAM OpenCRG files.

1 In RoadRunner, add the ASAM OpenDRIVE file and all linked ASAM OpenCRG files to a folder in
the Library Browser.

2 Drag the ASAM OpenDRIVE file from the Library Browser into the scene. This action switches
to the OpenDRIVE Viewer Tool.

3 In the 3D scene, click the imported ASAM OpenDRIVE file to select it.
4 On the toolbar to the left of the scene editing canvas, click the Build Scene button.

5 Select your desired options in the Import ASAM OpenDRIVE dialog box and click Import.
6 To visualize the CRG data, click the Road CRG Tool button, select the desired road, and select

the desired road span. RoadRunner displays the CRG data using a colormap overlaid on the road.
The Attributes pane shows the linked CRG file and the attributes of the CRG data, as specified
in the imported ASAM OpenDRIVE file.

Import ASAM OpenCRG File Independently

Follow these steps to assign CRG data to a road segment in a 3D scene by importing an ASAM
OpenCRG file.

1 In RoadRunner, add the ASAM OpenCRG file to a folder in the Library Browser.
2 Click the Road CRG Tool button on the toolbar.

3 Import Data

3-10

3 Select a road for which you want to define road surface data.
4 To define a span for road surface data, right-click the locations at which you want to insert span

nodes.
5 Select the desired road span and drag the ASAM OpenCRG file from the Library Browser into

the CRG file asset holder in the Attributes pane. The scene editing canvas shows the CRG data
using a colormap overlaid on the road.

You can repeat these steps to assign CRG data from the same or a different ASAM OpenCRG file to
other road segments in the scene.

See Also
Road CRG Tool | Synthetic OpenCRG Assets | OpenDRIVE Viewer Tool

More About
• “Export to ASAM OpenCRG” on page 5-48
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Export to ASAM OpenDRIVE” on page 5-24

External Websites
• ASAM OpenCRG

 Importing ASAM OpenCRG Files

3-11

https://www.asam.net/standards/detail/opencrg/

Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI
API 3.0) Data

This example shows how to build roads in RoadRunner by using Zenrin Japan Map API 3.0 (Itsumo
NAVI API 3.0) 1 data for an area in Koto City, Tokyo, Japan that contains roads and few overpasses.

Choose Area of Interest
Specify the area of interest by using the World Settings Tool.

In the Attributes pane, in the World Origin section, specify the Latitude as 35.6380286 degrees
and the Longitude as 139.7958767 degrees. In the Workspace section, under Extents, specify
both X and Y as 500 meters. Apply your changes by selecting Apply World Changes.

Import and Explore Data
Open the SD Map Viewer Tool from the toolbar by clicking the SD Map Viewer Tool button.

Then, import the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) data by clicking the Import Data
For Area button on the toolbar to the left of the scene editing canvas.

Before you import the data, you must enter valid Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0)
access credentials in the Zenrin Map Credentials dialog box.

• Access Client ID — Specify your Zenrin client ID.
• Access Key Secret — Specify your Zenrin secret key.
• Access Point — Select the appropriate option for your Zenrin license:

• Production (https://core.its-mo.com) — Use this option when you have a permanent
license agreement to access Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0).

• Verification (https://test.core.its-mo.com) — Use this option when you have an
evaluation license agreement to access Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0).

1 To gain access to the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service and get the required credentials (a client
ID and secret key), you must enter into a separate agreement with ZENRIN DataCom CO., LTD.

3 Import Data

3-12

https://support.e-map.ne.jp/manuals/v3/

• Show my credentials — Select this parameter to see the explicit values you enter in the Access
Client ID and Access Key Secret fields. By default, this parameter is not selected and your input
is hidden.

• Save my credentials — Select this parameter to save the specified credentials for future
RoadRunner sessions. The credentials remain saved until you delete them. If you do not want to
save the credentials for future sessions, clear this parameter. In this case, RoadRunner saves the
credentials for only the rest of this RoadRunner session on your machine. By default, this
parameter is not selected.

You can delete your saved credentials by clearing the Access Client ID and Access Key Secret
boxes and clicking OK. RoadRunner displays an error message indicating an issue with either
your credentials or your connection to the download server. Ignore the error message, and click
Cancel to close the dialog box.

Once you have specified your access credentials, click OK.

The SD Map Viewer Tool imports SD Map data that intersects your workspace, converts the data
into a preview called an SD Map, and displays the SD Map in the scene editing canvas. The SD Map
displays the nodes and links of the road data.

 Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data

3-13

Explore the imported data by selecting links and nodes. You can view their properties on the
Attributes pane. The type of road element selected in the SD Map scene editing canvas determines
the available properties.

3 Import Data

3-14

Simple Link

• Id — Unique identification number for the selected link.
• Skip During Build — Specifies whether to add or skip this link during the build process. If you

select this attribute, the SD Map represents this link as a dashed line, and the link is ignored in
the build process. To include the link in the build process, which displays it as a solid line, clear
this attribute.

The SD Map Viewer Tool imports the actual links with the Skip During Build attribute
disabled, displaying them as solid lines.

SD Map data can contain unsupported links for the same area. By default, the SD Map Viewer
Tool imports these unsupported links with the Skip During Build attribute enabled, displaying
them in the SD Map as dashed lines.. You can see a list of detected unsupported link IDs in the
Output window. Select these IDs to navigate to and view the links in the SD Map.

Note You can click and drag to select multiple links within a rectangular region of interest. You
can also hold Shift and click additional links, to add them to the selection. You can control the
Skip During Build attribute collectively, for all selected links in the Attributes pane.

• Road Width (in meters) — Min and Max road width.

 Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data

3-15

• Number of Lanes — Number of forward and backward lanes. Forward and Backward attributes
shows the Min and Max values if the map data specifies it.

• Travel Direction — Direction of travel for the road segment as forward, backward, or
bidirectional.

Each link has several control points and each Control Point contains Position attribute specifying
its (X,Y, Z) location.

Simple Node

• Id — Unique identification number for the selected node.
• Connecting Links — Displays all the links connected to the selected node. Each connected link is

labelled with its associated ID and orientation.

For details on the programmatic use of these parameters while building roads, see “Road Width and
Number of Lane Calculations”.

Build Roads
You can build roads for the imported data using one or more of these processes.

• All data — Build all of the imported data.
• Select links — Click and drag to select links within a rectangular region of interest.

You can also delete selected links to avoid building them.

For this example, do not select any of the links.

Then, click the Build Roads button on the toolbar to the left of the scene editing canvas.

3 Import Data

3-16

In the Simple Map Builder dialog box, you can view and modify these options:

• Preserve Heights — By default, the SD Map Viewer Tool preserves the heights of the imported
roads. To remove height information, clear this option.

• Clear Scene of Existing Data — By default, the SD Map Viewer Tool removes already built
roads from your scene when you use it to build a scene. To keep the existing roads in the scene,
clear this option.

• Driving Side — By default, SD Map Viewer Tool considers left side of the road as forward
direction of driving. To consider right side of the road as forward direction of driving, select
Right from the drop down list.

• Enable Overlap Groups — By default, the SD Map Viewer Tool enforces junction location
information to create junctions. To create junctions using geometric overlaps, clear this option.

 Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data

3-17

• Auto Detect Bridges — By default, the SD Map Viewer Tool creates bridges at road
intersections when the roads have different elevations. The tool extends the bridges by 20 meters
on either side of the intersection. You can change the amount of extension by changing the Bridge
Span Inflation value. To prevent the tool from creating bridges, clear this option. For more
information, see Road Construction Tool.

• Build Info — Displays the link length and number of links in all imported data, as well as in the
selected subset of roads in the scene.

Note The Enable Roads by Layer and Create Turn Lanes options are not applicable. Setting or
clearing these options, does not affect the roads build from Zenrin Japan Map API 3.0 (Itsumo NAVI
API 3.0) data.

Build roads in the entire scene by clicking Build All. If you want to build only a subset of the roads in
the scene, select the links to include in the scene and click Build Selected.

3 Import Data

3-18

After you build roads, you can modify the scene in RoadRunner. You can also export the scene to
ASAM OpenDRIVE file. For more information, see “Export to ASAM OpenDRIVE” on page 5-24.

If RoadRunner detects lane marking overlaps when building roads, then might display this message
in the SD Map Builder Results dialog box:

>WARNING: Lane marking overlaps detected. Adjust road centers at these
locations

To resolve this issue, open the Road Plan Tool, click-navigate to the overlap locations, and the adjust
road centers.

Troubleshoot Import and Build Issues
Depending on your area of interest, you might encounter issues when the SD Map Viewer Tool
imports data and builds roads. Some issues might be due to missing or inaccurate SD Map data.

Gap

Issue Solution
The built road contains gaps between roads at
intersections.

Open the Custom Junction Tool, navigate to the
affected junction, and increase the ray Distance
in the Attributes pane.

Steep Road Meshes

Issue Solution
The built road contains steep rises or falls in the
road meshes at road junctions.

Open the Corner Tool, navigate to the affected
junction, and reduce the Corner Radius in the
Attributes pane.

 Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data

3-19

Roads Under Terrain

Issue Solution
The built scene contains roads under the terrain. Open the Surface Tool, navigate to the affected

location, and manually adjust the terrain.

See Also
SD Map Viewer Tool | Custom Junction Tool | Corner Tool | Surface Tool

More About
• “Export to ASAM OpenDRIVE” on page 5-24
• “Build Roads Using OpenStreetMap Data” on page 3-37
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Import ASAM OpenCRG File” on page 3-10

External Websites
• ZENRIN DataCom CO., LTD.

3 Import Data

3-20

https://www.zenrin-datacom.net/toppage/

Import Custom Data Using RoadRunner HD Map
This example shows how to write C++ code to generate RoadRunner HD Map file to import custom
data into RoadRunner.

Introduction
RoadRunner HD Map is a road data model for representing high-definition (HD) map data in a
RoadRunner scene. This model defines a simple data structure to represent road layouts using lanes,
lane boundaries, lane markings, and junctions. The model also defines data structure for other scene
elements such as barriers, signs, and different types of static objects. The data in this model is
serialized using protocol buffers and saved in a binary format with the .rrhd extension. The
RoadRunner HD Map binary file consists of these data sections:

• Varint Header Size — Specifies the size of the header message. For more information, see Base
128 Varints in the Google Protocol Buffers guide.

• Header Message — Specifies information about the file author, map projection, and spatial bounds
of the geometric data.

• RoadRunner HD Map Message — Specifies properties for lanes, lane boundaries, lane markings,
and junctions.

You can create a RoadRunner HD Map binary file for your custom HD map data using protocol buffer
schema files. These schema files describe the RoadRunner HD Map data model. Protocol buffers
support various programming languages, so you can choose which language to use when
implementing a RoadRunner HD Map. This example uses C++.

Compile Protocol Buffers for RoadRunner HD Map
Your local installation of RoadRunner contains the protocol buffer schema files at this location,
referred to as RoadRunnerProtoPath in this example.

RRInstallFolder\bin\platform\Proto

• RRInstallFolder is your local RoadRunner installation folder.
• platform is the folder name for your OS platform.

Inside the Proto folder, the top-level mathworks folder contains the hierarchy of protobuf files. This
table shows the protobuf files that you need to compile and their locations.

Protobuf Files to Compile Protobuf File Locations
hd_map_header.proto RoadRunnerProtoPath\mathworks\scenario

\scene\hdhd_map.proto
hd_lanes.proto
hd_lane_markings.proto
hd_junctions.proto
hd_barriers.proto
hd_signs.proto

 Import Custom Data Using RoadRunner HD Map

3-21

https://developers.google.com/protocol-buffers/docs/encoding#varints
https://developers.google.com/protocol-buffers/docs/encoding#varints

Protobuf Files to Compile Protobuf File Locations
hd_static_objects.proto
common_attributes.proto
geometry.proto RoadRunnerProtoPath\mathworks\scenario

\common

To compile the protocol buffers using C++, follow these steps:

1 Download and install the protocol compiler protoc (minimum version 3.8.0) and the protobuf C
++ runtime. Follow the instructions at https://github.com/protocolbuffers/protobuf.

The installation creates these folders at the install location:

• bin — Contains the protoc compiler.
• include — Contains additional header files and protobuf files required for compilation.
• lib — Contains linking libraries.

2 Run the compiler. Specify file paths for these folders:

• include — Folder created during previous step.
• RoadRunnerProtoPath — Folder that contains the RoadRunner HD Map protobuf files.
• DestinationPath — Destination directory for the generated code.
• Absolute file path to the source protobuf file.

For example, use this command to compile hd_map_header.proto, where DestinationPath
specifies the destination directory.
protoc -I="..\include" -I="RoadRunnerProtoPath" --cpp_out="DestinationPath" ^
"RoadRunnerProtoPath\mathworks\scenario\scene\hd\hd_map_header.proto"

3 Verify that the compiler creates these files for the .proto file:

• Header file with the extension .pb.h.
• Implementation file with the extension .pb.cc.

4 Repeat steps 2 and 3 to compile the other protobuf files.

Prepare Custom Data
In practice, you must explore the data of the custom scene you are importing to determine its lane
attributes. This example uses synthetic data to create a scene consisting of two longitudinally
connected lane segments. Each lane has two lane boundaries. This table shows the attributes of these
lanes and lane boundaries.

Attribute Value for Lane 1 Value for Lane 2
Lane ID Lane1 Lane2
Geometry [(0.782,-1.56)

(50.78,23.43)]
[(50.78,23.43)
(100.78,48.43)]

Type Driving Driving
Travel Direction Forward Forward

3 Import Data

3-22

https://github.com/protocolbuffers/protobuf

Attribute Value for Lane 1 Value for Lane 2
Predecessor ID - Lane1
Predecessor Alignment - Forward
Successor ID Lane2 -
Successor Alignment Forward -
Left Lane Boundary ID LaneBoundary1 LaneBoundary4
Left Lane Boundary Geometry [(0,0) (50,25)] [(50,25) (100,50)]
Right Lane Boundary ID LaneBoundary2 LaneBoundary3
Right Lane Boundary Geometry [(1.565,-3.13)

(51.565,21.864)]
[(51.565,21.864)
(101.565,46.869)]

The example also shows how to represent data for other scene elements such as barriers, signs, trees
and buildings.

Create RoadRunner HD Map Binary File from Custom Data
Write C++ code to add custom data to the generated RoadRunner HD Map protocol buffer classes,
after compilation.

 Import Custom Data Using RoadRunner HD Map

3-23

C++ Code to Copy
/*
Copyright 2021-2022 The MathWorks, Inc.
An example code for creating RoadRunner HD Map binary file.
*/
#include "mathworks/scenario/scene/hd/hd_map.pb.h"
#include "mathworks/scenario/scene/hd/hd_map_header.pb.h"
#include <google/protobuf/util/delimited_message_util.h>

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
using namespace mathworks::scenario::scene::hdmap;

void WriteToRRHD(const string &filepath,
 const google::protobuf::MessageLite &headerMessage,
 const google::protobuf::MessageLite &HDMap);

int main(int argc, char **argv)
{
 HDMap myModel;

 // Add Lane1 to the Model
 Lane* lane1 = myModel.add_lanes();

 lane1->set_id("Lane1");
 auto lane1Geometry = lane1->mutable_geometry();

 // Start Point of Lane1
 auto startPoint_lane1 = lane1Geometry->add_values();
 startPoint_lane1->set_x(0.782);
 startPoint_lane1->set_y(-1.56);

 // End point of Lane1
 auto endPoint_lane1 = lane1Geometry->add_values();
 endPoint_lane1->set_x(50.78);
 endPoint_lane1->set_y(23.43);

 // Set type and direction for Lane1
 lane1->set_lane_type(LaneType::LANE_TYPE_DRIVING);
 lane1->set_travel_dir(TravelDir::TRAVEL_DIR_FORWARD);

 // Add Lane2 to the Model
 Lane* lane2 = myModel.add_lanes();

 lane2->set_id("Lane2");
 auto lane2Geometry = lane2->mutable_geometry();

 // Start Point of Lane2
 auto startPoint_lane2 = lane2Geometry->add_values();
 startPoint_lane2->set_x(50.78);
 startPoint_lane2->set_y(23.43);

 // End point of Lane2
 auto endPoint_lane2 = lane2Geometry->add_values();
 endPoint_lane2->set_x(100.78);
 endPoint_lane2->set_y(48.43);

 // Set type and direction for Lane2
 lane2->set_lane_type(LaneType::LANE_TYPE_DRIVING);
 lane2->set_travel_dir(TravelDir::TRAVEL_DIR_FORWARD);

 // Add connectivity information of Lane1 and Lane2
 auto predecessor = lane2->add_predecessors();
 auto predecessor_ref = predecessor->mutable_reference();
 predecessor_ref->set_id("Lane1");
 predecessor->set_alignment(Alignment::ALIGNMENT_FORWARD);

 auto successor = lane1->add_successors();

3 Import Data

3-24

 auto successor_ref = successor->mutable_reference();
 successor_ref->set_id("Lane2");
 successor->set_alignment(Alignment::ALIGNMENT_FORWARD);

 // Add lane boundaries to the model
 auto laneBoundary1 = myModel.add_lane_boundaries();
 laneBoundary1->set_id("LaneBoundary1");
 auto lb1Geometry = laneBoundary1->mutable_geometry();

 // Define the start point of LaneBoundary1
 auto startPoint_lb1 = lb1Geometry->add_values();
 startPoint_lb1->set_x(0);
 startPoint_lb1->set_y(0);

 // Define the end point of LaneBoundary1
 auto endPoint_lb1 = lb1Geometry->add_values();
 endPoint_lb1->set_x(50);
 endPoint_lb1->set_y(25);

 auto laneBoundary2 = myModel.add_lane_boundaries();
 laneBoundary2->set_id("LaneBoundary2");
 auto lb2Geometry = laneBoundary2->mutable_geometry();

 // Define the start point of LaneBoundary2
 auto startPoint_lb2 = lb2Geometry->add_values();
 startPoint_lb2->set_x(1.565);
 startPoint_lb2->set_y(-3.13);

 // Define the end point of LaneBoundary2
 auto endPoint_lb2 = lb2Geometry->add_values();
 endPoint_lb2->set_x(51.565);
 endPoint_lb2->set_y(21.864);

 auto laneBoundary3 = myModel.add_lane_boundaries();
 laneBoundary3->set_id("LaneBoundary3");
 auto lb3Geometry = laneBoundary3->mutable_geometry();

 // Define the start point of LaneBoundary3
 auto startPoint_lb3 = lb3Geometry->add_values();
 startPoint_lb3->set_x(51.565);
 startPoint_lb3->set_y(21.864);

 // Define the end point of LaneBoundary3
 auto endPoint_lb3 = lb3Geometry->add_values();
 endPoint_lb3->set_x(101.565);
 endPoint_lb3->set_y(46.869);

 auto laneBoundary4 = myModel.add_lane_boundaries();
 laneBoundary4->set_id("LaneBoundary4");
 auto lb4Geometry = laneBoundary4->mutable_geometry();

 // Define the start point of LaneBoundary4
 auto startPoint_lb4 = lb4Geometry->add_values();
 startPoint_lb4->set_x(50);
 startPoint_lb4->set_y(25);

 // Define the end point of LaneBoundary4
 auto endPoint_lb4 = lb4Geometry->add_values();
 endPoint_lb4->set_x(100);
 endPoint_lb4->set_y(50);

 // Connect lane boundaries to lane
 auto referenceBoundary1 = lane1->mutable_left_lane_boundary();
 auto referenceBoundary1_ref = referenceBoundary1->mutable_reference();
 referenceBoundary1_ref->set_id("LaneBoundary1");
 referenceBoundary1->set_alignment(Alignment::ALIGNMENT_FORWARD);

 auto referenceBoundary2 = lane1->mutable_right_lane_boundary();
 auto referenceBoundary2_ref = referenceBoundary2->mutable_reference();
 referenceBoundary2_ref->set_id("LaneBoundary2");
 referenceBoundary2->set_alignment(Alignment::ALIGNMENT_FORWARD);

 Import Custom Data Using RoadRunner HD Map

3-25

 auto referenceBoundary3 = lane2->mutable_right_lane_boundary();
 auto referenceBoundary3_ref = referenceBoundary3->mutable_reference();
 referenceBoundary3_ref->set_id("LaneBoundary3");
 referenceBoundary3->set_alignment(Alignment::ALIGNMENT_FORWARD);

 auto referenceBoundary4 = lane2->mutable_left_lane_boundary();
 auto referenceBoundary4_ref = referenceBoundary4->mutable_reference();
 referenceBoundary4_ref->set_id("LaneBoundary4");
 referenceBoundary4->set_alignment(Alignment::ALIGNMENT_FORWARD);

 // Add barrier type to the model
 auto barrierType1 = myModel.add_barrier_types();
 auto barrierTypeID = "BarrierType1";
 barrierType1->set_id(barrierTypeID);
 auto extrusionPath1 = barrierType1->mutable_extrusion_path();
 extrusionPath1->set_asset_path("Assets/Extrusions/GuardRail.rrext");

 // Add barrier to the model
 auto barrier1 = myModel.add_barriers();
 barrier1->set_id("Barrier1");
 auto barrier1Geometry = barrier1->mutable_geometry();

 // Define the geometry points of barrier
 auto barrier1_point1 = barrier1Geometry->add_values();
 barrier1_point1->set_x(1.565);
 barrier1_point1->set_y(-3.13);
 auto barrier1_point2 = barrier1Geometry->add_values();
 barrier1_point2->set_x(51.565);
 barrier1_point2->set_y(21.864);
 auto barrier1_point3 = barrier1Geometry->add_values();
 barrier1_point3->set_x(101.565);
 barrier1_point3->set_y(46.869);
 auto barrier1_ref = barrier1->mutable_barrier_type_ref();
 barrier1_ref->set_id(barrierTypeID);
 barrier1->flip_laterally();

 // Add sign type to the model
 auto signType1 = myModel.add_sign_types();
 auto signTypeID = "SignType1";
 signType1->set_id(signTypeID);
 auto signType1_asset_path = signType1->mutable_asset_path();
 signType1_asset_path->set_asset_path("Assets/Signs/US/Regulatory Signs/Sign_R2-1(30).svg");

 // Add sign to the model
 auto sign1 = myModel.add_signs();
 sign1->set_id("Sign1");
 auto sign1Geometry = sign1->mutable_geometry();
 auto sign1center = sign1Geometry->mutable_center();
 sign1center->set_x(8.62);
 sign1center->set_y(-3.70);
 sign1center->set_z(2);
 auto sign1dimension = sign1Geometry->mutable_dimension();
 sign1dimension->set_length(0);
 sign1dimension->set_width(0.5);
 sign1dimension->set_height(0.5);
 auto sign1geoOrientation = sign1Geometry->mutable_geo_orientation();
 auto sign1geoAngle = sign1geoOrientation->mutable_geo_angle();
 sign1geoAngle->set_roll(0);
 sign1geoAngle->set_pitch(0);
 sign1geoAngle->set_heading(-3383);
 auto sign1TypeRef = sign1->mutable_sign_type_ref();
 sign1TypeRef->set_id(signTypeID);

 // Add static objects to the model
 // Define pole type of static object
 auto staticObjectType1 = myModel.add_static_object_types();
 auto staticObjectTypeID1 = "StaticObjectType1";
 staticObjectType1->set_id(staticObjectTypeID1);
 auto staticObjectType1_asset_path = staticObjectType1->mutable_asset_path();
 staticObjectType1_asset_path->set_asset_path("Assets/Props/Signals/WoodPost_10ft.fbx");

 // Add pole to the model

3 Import Data

3-26

 pair<double, double> pole = { 8.689,-3.693 };
 auto so1 = myModel.add_static_objects();
 so1->set_id("Pole1");
 auto so1Geometry = so1->mutable_geometry();
 auto so1center = so1Geometry->mutable_center();
 so1center->set_x(pole.first);
 so1center->set_y(pole.second);
 so1center->set_z(1.4);
 auto so1dimension = so1Geometry->mutable_dimension();
 so1dimension->set_length(0.10 / 2.0);
 so1dimension->set_width(0.10/2.0);
 so1dimension->set_height(3.3/2.0);
 auto so1geoOrientation = so1Geometry->mutable_geo_orientation();
 auto so1geoAngle = so1geoOrientation->mutable_geo_angle();
 so1geoAngle->set_roll(0);
 so1geoAngle->set_pitch(0);
 so1geoAngle->set_heading(0);
 auto so1TypeRef = so1->mutable_object_type_ref();
 so1TypeRef->set_id(staticObjectTypeID1);

 // Define tree type of static object
 auto staticObjectType2 = myModel.add_static_object_types();
 auto staticObjectTypeID2 = "StaticObjectType2";
 staticObjectType2->set_id(staticObjectTypeID2);
 auto staticObjectType2_asset_path = staticObjectType2->mutable_asset_path();
 staticObjectType2_asset_path->set_asset_path("Assets/Props/Trees/Eucalyptus_Sm01.fbx");

 // Add trees to the model
 double treePositions[15][2] = {
 { 20.6743,2.2571 },
 { 32.7286,8.2143 },
 { 44.7829,14.1714 },
 { 56.8371,20.1286 },
 { 68.8914,26.0857 },
 { 80.9457,32.0429 },
 { 93,38 },
 { 87,48 },
 { 5,8 },
 { 16.7143,13.7857 },
 { 28.4286,19.5714 },
 { 40.1429,25.3571 },
 { 51.8571,31.1429 },
 { 63.5714,36.9286 },
 { 75.2857,42.7143 }
 };

 for (int i = 0; i < 15; i++)
 {
 auto so2 = myModel.add_static_objects();
 so2->set_id("Tree" + std::to_string(i));
 auto so2Geometry = so2->mutable_geometry();
 auto so2center = so2Geometry->mutable_center();
 so2center->set_x(treePositions[i][0]);
 so2center->set_y(treePositions[i][1]);
 so2center->set_z(1.4);
 auto so2dimension = so2Geometry->mutable_dimension();
 so2dimension->set_length(1);
 so2dimension->set_width(1);
 so2dimension->set_height(1.5);
 auto so2geoOrientation = so2Geometry->mutable_geo_orientation();
 auto so2geoAngle = so2geoOrientation->mutable_geo_angle();
 so2geoAngle->set_roll(0);
 so2geoAngle->set_pitch(0);
 so2geoAngle->set_heading(0);
 auto so2TypeRef = so2->mutable_object_type_ref();
 so2TypeRef->set_id(staticObjectTypeID2);
 }

 // Define building type of static object
 auto staticObjectType3 = myModel.add_static_object_types();
 auto staticObjectTypeID3 = "StaticObjectType3";
 staticObjectType3->set_id(staticObjectTypeID3);

 Import Custom Data Using RoadRunner HD Map

3-27

 auto staticObjectType3_asset_path = staticObjectType3->mutable_asset_path();
 staticObjectType3_asset_path->set_asset_path("Assets/Buildings/Downtown_30mX30m_6storey.fbx");

 // Add building to the model
 pair<double, double> building = { 31.670,50.01 };
 auto so3 = myModel.add_static_objects();
 so3->set_id("Building1");
 auto so3Geometry = so3->mutable_geometry();
 auto so3center = so3Geometry->mutable_center();
 so3center->set_x(building.first);
 so3center->set_y(building.second);
 so3center->set_z(13.3915);
 auto so3dimension = so3Geometry->mutable_dimension();
 so3dimension->set_length(31.5804 / 2.0);
 so3dimension->set_width(30.6722 / 2.0);
 so3dimension->set_height(38.7831 / 2.0);
 auto so3geoOrientation = so3Geometry->mutable_geo_orientation();
 auto so3geoAngle = so3geoOrientation->mutable_geo_angle();
 so3geoAngle->set_roll(0);
 so3geoAngle->set_pitch(0);
 so3geoAngle->set_heading(0.4697);
 auto so3TypeRef = so3->mutable_object_type_ref();
 so3TypeRef->set_id(staticObjectTypeID3);

 Header headerMessage;

 // Set the author of the file
 headerMessage.set_author("Author Name");

 // Set the projection of the file
 auto proj = headerMessage.mutable_projection();
 proj->set_projection("+proj=tmerc +datum=WGS84");

 auto geoBounds = headerMessage.mutable_geographic_boundary();
 auto bounds = geoBounds->mutable_bounds();

 // Set the maximum bounds
 auto boundsMax = bounds->mutable_max();
 boundsMax->set_x(107.57);
 boundsMax->set_y(119.04);
 boundsMax->set_z(0);

 // Set the minimum bounds
 auto boundsMin = bounds->mutable_min();
 boundsMin->set_x(-3.700);
 boundsMin->set_y(-18.830);
 boundsMin->set_z(0);

 // Specify the output file name
 string filepath = "example.rrhd";

 // Write the RRHD file to disk
 WriteToRRHD(filepath, headerMessage, myModel);

 return 0;
}

void WriteToRRHD(const string &filepath,
 const google::protobuf::MessageLite &headerMessage,
 const google::protobuf::MessageLite &HDMap)
{
 // Open the file as output binary
 fstream fileStream(filepath, ios::out | ios::binary);

 // Write the delimited header message to the buffer
 if (!google::protobuf::util::SerializeDelimitedToOstream(
 headerMessage, &fileStream))
 cerr << "Error writing the header message" << endl;

 // Write the RoadRunner HD Map message to buffer
 if (!HDMap.SerializeToOstream(&fileStream))

3 Import Data

3-28

 cerr << "Error writing the RoadRunner HD Map message" << endl;
}

The table describes the code in this example.

 Import Custom Data Using RoadRunner HD Map

3-29

Code and Description
Include the required header files. The first two header files are generated when you compile the
protocol buffer files for RoadRunner HD Map. The third file is generated when you import protocol
buffers into your project.

Include standard C++ libraries and use the mathworks::scenario::scene::hdmap name space
for RoadRunner HD Map.
#include "mathworks/scenario/scene/hd/hd_map.pb.h"
#include "mathworks/scenario/scene/hd/hd_map_header.pb.h"
#include <google/protobuf/util/delimited_message_util.h>

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
using namespace mathworks::scenario::scene::hdmap;

Declare the WriteToRRHD function that writes delimited, serialized data to the output binary file.
void WriteToRRHD(const string &filepath,
 const google::protobuf::MessageLite &headerMessage,
 const google::protobuf::MessageLite &HDMap);

Create an instance of RoadRunner HD Map.
int main(int argc, char **argv)
{
 HDMap myModel;

Add this information for two lanes to the model:

• Lane ID
• Coordinates defining lane geometry
• Lane type
• Driving direction

// Add Lane1 to the model
Lane* lane1 = myModel.add_lanes();

lane1->set_id("Lane1");
auto lane1Geometry = lane1->mutable_geometry();

// Start Point of Lane1
auto startPoint_lane1 = lane1Geometry->add_values();
startPoint_lane1->set_x(0.782);
startPoint_lane1->set_y(-1.56);

// End point of Lane1
auto endPoint_lane1 = lane1Geometry->add_values();
endPoint_lane1->set_x(50.78);
endPoint_lane1->set_y(23.43);

// Set type and direction for Lane1
lane1->set_lane_type(LaneType::LANE_TYPE_DRIVING);
lane1->set_travel_dir(TravelDir::TRAVEL_DIR_FORWARD);

// Add Lane2 to the Model
Lane* lane2 = myModel.add_lanes();

lane2->set_id("Lane2");
auto lane2Geometry = lane2->mutable_geometry();

// Start Point of Lane2

3 Import Data

3-30

Code and Description
auto startPoint_lane2 = lane2Geometry->add_values();
startPoint_lane2->set_x(50.78);
startPoint_lane2->set_y(23.43);

// End point of Lane2
auto endPoint_lane2 = lane2Geometry->add_values();
endPoint_lane2->set_x(100.78);
endPoint_lane2->set_y(48.43);

// Set type and direction for Lane2
lane2->set_lane_type(LaneType::LANE_TYPE_DRIVING);
lane2->set_travel_dir(TravelDir::TRAVEL_DIR_FORWARD);

Specify alignment between the lanes by defining information about their predecessor and successor
relationship.
// Add connectivity information of Lane1 and Lane2
auto predecessor = lane2->add_predecessors();
auto predecessor_ref = predecessor->mutable_reference();
predecessor_ref->set_id("Lane1");
predecessor->set_alignment(Alignment::ALIGNMENT_FORWARD);

auto successor = lane1->add_successors();
auto successor_ref = successor->mutable_reference();
successor_ref->set_id("Lane2");
successor->set_alignment(Alignment::ALIGNMENT_FORWARD);

Add four lane boundaries to the model and define the geometry for each lane boundary.
// Add lane boundaries to the model
auto laneBoundary1 = myModel.add_lane_boundaries();
laneBoundary1->set_id("LaneBoundary1");
auto lb1Geometry = laneBoundary1->mutable_geometry();

// Define the start point of LaneBoundary1
auto startPoint_lb1 = lb1Geometry->add_values();
startPoint_lb1->set_x(0);
startPoint_lb1->set_y(0);

// Define the end point of LaneBoundary1
auto endPoint_lb1 = lb1Geometry->add_values();
endPoint_lb1->set_x(50);
endPoint_lb1->set_y(25);

auto laneBoundary2 = myModel.add_lane_boundaries();
laneBoundary2->set_id("LaneBoundary2");
auto lb2Geometry = laneBoundary2->mutable_geometry();

// Define the start point of LaneBoundary2
auto startPoint_lb2 = lb2Geometry->add_values();
startPoint_lb2->set_x(1.565);
startPoint_lb2->set_y(-3.13);

// Define the end point of LaneBoundary2
auto endPoint_lb2 = lb2Geometry->add_values();
endPoint_lb2->set_x(51.565);
endPoint_lb2->set_y(21.864);

auto laneBoundary3 = myModel.add_lane_boundaries();
laneBoundary3->set_id("LaneBoundary3");
auto lb3Geometry = laneBoundary3->mutable_geometry();

// Define the start point of LaneBoundary3
auto startPoint_lb3 = lb3Geometry->add_values();
startPoint_lb3->set_x(51.565);
startPoint_lb3->set_y(21.864);

// Define the end point of LaneBoundary3
auto endPoint_lb3 = lb3Geometry->add_values();

 Import Custom Data Using RoadRunner HD Map

3-31

Code and Description
endPoint_lb3->set_x(101.565);
endPoint_lb3->set_y(46.869);

auto laneBoundary4 = myModel.add_lane_boundaries();
laneBoundary4->set_id("LaneBoundary4");
auto lb4Geometry = laneBoundary4->mutable_geometry();

// Define the start point of LaneBoundary4
auto startPoint_lb4 = lb4Geometry->add_values();
startPoint_lb4->set_x(50);
startPoint_lb4->set_y(25);

// Define the end point of LaneBoundary4
auto endPoint_lb4 = lb4Geometry->add_values();
endPoint_lb4->set_x(100);
endPoint_lb4->set_y(50);

Link the lane boundaries to the lanes. Define the left and right lane boundaries for each lane, and
specify alignment between lanes and lane boundaries.

// Connect lane boundaries to lane
auto referenceBoundary1 = lane1->mutable_left_lane_boundary();
auto referenceBoundary1_ref = referenceBoundary1->mutable_reference();
referenceBoundary1_ref->set_id("LaneBoundary1");
referenceBoundary1->set_alignment(Alignment::ALIGNMENT_FORWARD);

auto referenceBoundary2 = lane1->mutable_right_lane_boundary();
auto referenceBoundary2_ref = referenceBoundary2->mutable_reference();
referenceBoundary2_ref->set_id("LaneBoundary2");
referenceBoundary2->set_alignment(Alignment::ALIGNMENT_FORWARD);

auto referenceBoundary3 = lane2->mutable_right_lane_boundary();
auto referenceBoundary3_ref = referenceBoundary3->mutable_reference();
referenceBoundary3_ref->set_id("LaneBoundary3");
referenceBoundary3->set_alignment(Alignment::ALIGNMENT_FORWARD);

auto referenceBoundary4 = lane2->mutable_left_lane_boundary();
auto referenceBoundary4_ref = referenceBoundary4->mutable_reference();
referenceBoundary4_ref->set_id("LaneBoundary4");
referenceBoundary4->set_alignment(Alignment::ALIGNMENT_FORWARD);

Specify type of barrier, add barrier to the model and define the properties of the barrier.

// Add barrier type to the model
auto barrierType1 = myModel.add_barrier_types();
auto barrierTypeID = "BarrierType1";
barrierType1->set_id(barrierTypeID);
auto extrusionPath1 = barrierType1->mutable_extrusion_path();
extrusionPath1->set_asset_path("Assets/Extrusions/GuardRail.rrext");

// Add barrier to the model
auto barrier1 = myModel.add_barriers();
barrier1->set_id("Barrier1");
auto barrier1Geometry = barrier1->mutable_geometry();

// Define the geometry points of barrier
auto barrier1_point1 = barrier1Geometry->add_values();
barrier1_point1->set_x(1.565);
barrier1_point1->set_y(-3.13);
auto barrier1_point2 = barrier1Geometry->add_values();
barrier1_point2->set_x(51.565);
barrier1_point2->set_y(21.864);
auto barrier1_point3 = barrier1Geometry->add_values();
barrier1_point3->set_x(101.565);
barrier1_point3->set_y(46.869);
auto barrier1_ref = barrier1->mutable_barrier_type_ref();
barrier1_ref->set_id(barrierTypeID);
barrier1->flip_laterally();

3 Import Data

3-32

Code and Description
Specify type of sign, add sign to the model and define the properties of the sign.
// Add sign type to the model
auto signType1 = myModel.add_sign_types();
auto signTypeID = "SignType1";
signType1->set_id(signTypeID);
auto signType1_asset_path = signType1->mutable_asset_path();
signType1_asset_path->set_asset_path("Assets/Signs/US/Regulatory Signs/Sign_R2-1(30).svg");

// Add sign to the model
auto sign1 = myModel.add_signs();
sign1->set_id("Sign1");
auto sign1Geometry = sign1->mutable_geometry();
auto sign1center = sign1Geometry->mutable_center();
sign1center->set_x(8.62);
sign1center->set_y(-3.70);
sign1center->set_z(2);
auto sign1dimension = sign1Geometry->mutable_dimension();
sign1dimension->set_length(0);
sign1dimension->set_width(0.5);
sign1dimension->set_height(0.5);
auto sign1geoOrientation = sign1Geometry->mutable_geo_orientation();
auto sign1geoAngle = sign1geoOrientation->mutable_geo_angle();
sign1geoAngle->set_roll(0);
sign1geoAngle->set_pitch(0);
sign1geoAngle->set_heading(-3383);
auto sign1TypeRef = sign1->mutable_sign_type_ref();
sign1TypeRef->set_id(signTypeID);

Specify pole type of static object, add pole to the model, and define the properties of the pole.
// Add static objects to the model
// Define pole type of static object
auto staticObjectType1 = myModel.add_static_object_types();
auto staticObjectTypeID1 = "StaticObjectType1";
staticObjectType1->set_id(staticObjectTypeID1);
auto staticObjectType1_asset_path = staticObjectType1->mutable_asset_path();
staticObjectType1_asset_path->set_asset_path("Assets/Props/Signals/WoodPost_10ft.fbx");

// Add pole to the model
pair<double, double> pole = { 8.689,-3.693 };
auto so1 = myModel.add_static_objects();
so1->set_id("Pole1");
auto so1Geometry = so1->mutable_geometry();
auto so1center = so1Geometry->mutable_center();
so1center->set_x(pole.first);
so1center->set_y(pole.second);
so1center->set_z(1.4);
auto so1dimension = so1Geometry->mutable_dimension();
so1dimension->set_length(0.10 / 2.0);
so1dimension->set_width(0.10/2.0);
so1dimension->set_height(3.3/2.0);
auto so1geoOrientation = so1Geometry->mutable_geo_orientation();
auto so1geoAngle = so1geoOrientation->mutable_geo_angle();
so1geoAngle->set_roll(0);
so1geoAngle->set_pitch(0);
so1geoAngle->set_heading(0);
auto so1TypeRef = so1->mutable_object_type_ref();
so1TypeRef->set_id(staticObjectTypeID1);

Specify tree type of static object, add trees to the model and define the properties of the trees.
// Define tree type of static object
auto staticObjectType2 = myModel.add_static_object_types();
auto staticObjectTypeID2 = "StaticObjectType2";
staticObjectType2->set_id(staticObjectTypeID2);
auto staticObjectType2_asset_path = staticObjectType2->mutable_asset_path();
staticObjectType2_asset_path->set_asset_path("Assets/Props/Trees/Eucalyptus_Sm01.fbx");

// Add trees to the model

 Import Custom Data Using RoadRunner HD Map

3-33

Code and Description
double treePositions[15][2] = {
 { 20.6743,2.2571 },
 { 32.7286,8.2143 },
 { 44.7829,14.1714 },
 { 56.8371,20.1286 },
 { 68.8914,26.0857 },
 { 80.9457,32.0429 },
 { 93,38 },
 { 87,48 },
 { 5,8 },
 { 16.7143,13.7857 },
 { 28.4286,19.5714 },
 { 40.1429,25.3571 },
 { 51.8571,31.1429 },
 { 63.5714,36.9286 },
 { 75.2857,42.7143 }
};

for (int i = 0; i < 15; i++)
{
 auto so2 = myModel.add_static_objects();
 so2->set_id("Tree" + std::to_string(i));
 auto so2Geometry = so2->mutable_geometry();
 auto so2center = so2Geometry->mutable_center();
 so2center->set_x(treePositions[i][0]);
 so2center->set_y(treePositions[i][1]);
 so2center->set_z(1.4);
 auto so2dimension = so2Geometry->mutable_dimension();
 so2dimension->set_length(1);
 so2dimension->set_width(1);
 so2dimension->set_height(1.5);
 auto so2geoOrientation = so2Geometry->mutable_geo_orientation();
 auto so2geoAngle = so2geoOrientation->mutable_geo_angle();
 so2geoAngle->set_roll(0);
 so2geoAngle->set_pitch(0);
 so2geoAngle->set_heading(0);
 auto so2TypeRef = so2->mutable_object_type_ref();
 so2TypeRef->set_id(staticObjectTypeID2);
}

Specify building type of static object, add building to the model and define the properties of the
building.
// Define building type of static object
auto staticObjectType3 = myModel.add_static_object_types();
auto staticObjectTypeID3 = "StaticObjectType3";
staticObjectType3->set_id(staticObjectTypeID3);
auto staticObjectType3_asset_path = staticObjectType3->mutable_asset_path();
staticObjectType3_asset_path->set_asset_path("Assets/Buildings/Downtown_30mX30m_6storey.fbx");

// Add building to the model
pair<double, double> building = { 31.670,50.01 };
auto so3 = myModel.add_static_objects();
so3->set_id("Building1");
auto so3Geometry = so3->mutable_geometry();
auto so3center = so3Geometry->mutable_center();
so3center->set_x(building.first);
so3center->set_y(building.second);
so3center->set_z(13.3915);
auto so3dimension = so3Geometry->mutable_dimension();
so3dimension->set_length(31.5804 / 2.0);
so3dimension->set_width(30.6722 / 2.0);
so3dimension->set_height(38.7831 / 2.0);
auto so3geoOrientation = so3Geometry->mutable_geo_orientation();
auto so3geoAngle = so3geoOrientation->mutable_geo_angle();
so3geoAngle->set_roll(0);
so3geoAngle->set_pitch(0);
so3geoAngle->set_heading(0.4697);

3 Import Data

3-34

Code and Description
auto so3TypeRef = so3->mutable_object_type_ref();
so3TypeRef->set_id(staticObjectTypeID3);

Define the header message by specifying metadata about the file author, projection of the file and
spatial bounds of the geometric data.
Header headerMessage;

// Set the author of the file
headerMessage.set_author("Author Name");

// Set the projection of the file
auto proj = headerMessage.mutable_projection();
proj->set_projection("+proj=tmerc +datum=WGS84");

auto geoBounds = headerMessage.mutable_geographic_boundary();
auto bounds = geoBounds->mutable_bounds();

// Set the maximum bounds
auto boundsMax = bounds->mutable_max();
boundsMax->set_x(107.57);
boundsMax->set_y(119.04);
boundsMax->set_z(0);

// Set the minimum bounds
auto boundsMin = bounds->mutable_min();
boundsMin->set_x(-3.700);
boundsMin->set_y(-18.830);
boundsMin->set_z(0);

Define the file path, and then generate a RoadRunner HD Map binary file using the WriteToRRHD
function. The function writes delimited serialized, data to the output binary file.
// Specify the output file name
string filepath = "example.rrhd";

// Write the RRHD file to disk
WriteToRRHD(filepath, headerMessage, myModel);

return 0;
}

void WriteToRRHD(const string &filepath,
 const google::protobuf::MessageLite &headerMessage,
 const google::protobuf::MessageLite &HDMap)
{
// Open the file as output binary
fstream fileStream(filepath, ios::out | ios::binary);

// Write the delimited header message to the buffer
if (!google::protobuf::util::SerializeDelimitedToOstream(
 headerMessage, &fileStream))
 cerr << "Error writing the header message" << endl;

// Write the RoadRunner HD Map message to buffer
if (!HDMap.SerializeToOstream(&fileStream))
 cerr << "Error writing the RoadRunner HD Map message" << endl;
}

Import HD Map File into RoadRunner
To import the RoadRunner HD Map binary file into RoadRunner, follow these steps:

1 In RoadRunner, add the HD Map file to a folder in the Library Browser.
2 Select the file in the Library Browser to see the attributes of the file in the Attributes pane.

 Import Custom Data Using RoadRunner HD Map

3-35

3 If the Attributes pane does not show the projection data, select Set Custom Projection, specify
the latitude and longitude of the (0,0) point in the file, and select Use Transverse Mercator At.
Then click OK.

4 Drag the file from the Library Browser into the scene. This action switches to the Scene
Builder Tool.

The scene editing canvas shows the RoadRunner HD Map of the scene. Verify the imported data by
selecting control points, lanes, and lane boundaries from the Attributes pane.

See Also
hd_map_header.proto | hd_map.proto | hd_lanes.proto | hd_lane_markings.proto |
hd_junctions.proto | common_attributes.proto | geometry.proto

Related Examples
• “Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19
• “Build Scenes from Custom Data Using RoadRunner HD Map”

External Websites
• Protocol Buffers

3 Import Data

3-36

https://developers.google.com/protocol-buffers

Build Roads Using OpenStreetMap Data
OpenStreetMap is a free, open-source, web map service that enables you to access crowd-sourced
map data. Using RoadRunner, you can import and preview map data from an OpenStreetMap file and
use it to build roads.

Import OpenStreetMap File
To import OpenStreetMap data, you must first select an OpenStreetMap file containing road
geometry. To get these files, visit openstreetmap.org, specify a map location, manually adjust the
region around this location, and export the road geometry for that region to an OpenStreetMap file
with extension .osm. OpenStreetMap exports only the roads whose whole lengths are within the
specified region. In this example, you use an OpenStreetMap file previously exported from the
website.

1 Open the SD Map Viewer Tool from the toolbar by clicking the SD Map Viewer Tool button.

2 Click the Open OpenStreetMap File button on the toolbar to the left of scene editing canvas.

3 In the Open OpenStreetMap File dialog box, browse to this file, select it, and click Open.

RRInstallFolder/bin/platform/AssetsInstall/SampleFiles/city.osm

• RRInstallFolder is your local RoadRunner installation folder.
• platform is the folder name for your OS platform.

The file was downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons
Open Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

The SD Map Viewer Tool imports SD Map data that intersects your workspace, converts the data
into a preview called an SD Map, and displays the SD Map in the scene editing canvas. The SD Map
displays the nodes and links of the road data.

 Build Roads Using OpenStreetMap Data

3-37

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Note

• When you import an OpenStreetMap file into a new scene, the SD Map Viewer Tool
automatically sets the world origin using the geographic bounds specified in the file. However, to
successfully import an OpenStreetMap file into an existing scene that has an already specified
World Origin, the geographic bounds specified in the file must approximately match the World
Origin value of the existing scene.

• OpenStreetMap does not specify road junction information. When a road intersects another road,
the SD Map Viewer Tool generates a separate link for each segment of the intersecting roads
before and after the intersection. As a result, the number of generated links does not match the
number of roads specified in the OpenStreetMap file.

Explore Imported Data
Explore the imported data by selecting links and nodes. You can view their attributes in the
Attributes pane. The type of road element selected in the SD Map scene editing canvas determines
the available attributes.

3 Import Data

3-38

Simple Link

• Id — Unique identification number for the selected link.
• LayerId — Unique layer identification number for the selected link.
• Skip During Build — Specifies whether to add or skip this link during the build process. If you

select this attribute, the SD Map represents this link as a dashed line, and the link is ignored in
the build process. To include the link in the build process, which displays it as a solid line, clear
this attribute.

If you clear the Skip During Build attribute , the SD Map Viewer Tool imports the actual links
and displays them as solid lines.

Note You can click and drag to select multiple links within a rectangular region of interest. You
can also hold Shift and click additional links to add them to the selection. You can control the
Skip During Build attribute collectively, for all selected links, in the Attributes pane.

• Road Width (in meters) — Width of the road corresponding to the selected link. Because
OpenStreetMap does not specify the width of a lane or a road, the SD Map Viewer Tool sets the
default lane width to 3.5 meters. Road width is the product of the lane width and the number of
lanes within a road.

• Number of Lanes — Number of Forward and Backward lanes for the road corresponding to the
selected link. If the input file does not specify the number of lanes for a road, the SD Map Viewer
Tool estimates one lane for each travel direction. By default, one-way roads have one lane, and
bidirectional roads have two total lanes, one for each travel direction.

 Build Roads Using OpenStreetMap Data

3-39

• Travel Direction — Direction of travel for the road corresponding to the selected link, specified
as Forward, Backward, or Bidirectional. If the input file does not specify the oneway tag for
a road, the SD Map Viewer Tool assumes the road is bidirectional.

Each link has several control points and each Control Point contains a Position attribute specifying
its (X,Y,Z) location.

Simple Node

• Id— Unique identification number for the selected node.
• Connecting Links— Displays all the links connected to the selected node. Each connected link is

labelled with its associated ID and orientation.

Build Roads
You can build roads for the imported data using one of these processes.

• All data — Build all of the imported data.
• Select links — Click and drag to select links within a rectangular region of interest.

You can also delete selected links to avoid building them.

For this example, do not select any links. Click the Build Roads button on the toolbar to the left of
the scene editing canvas to open the SD Map Builder dialog box.

3 Import Data

3-40

In the SD Map Builder dialog box, you can view and modify these options:

 Build Roads Using OpenStreetMap Data

3-41

Option Description
Preserve Heights OpenStreetMap files does not contain road

elevation information. By default, this option is
not applicable.

Dependencies

• This option is applicable only when the
Elevate Roads by Layer option is enabled,
and the imported OpenStreetMap file contains
layer ID information.

Clear Scene of Existing Data By default, the SD Map Viewer Tool removes
already built roads from your scene when you use
it to build a scene. To keep the existing roads in
the scene, clear this option.

Driving Side By default, SD Map Viewer Tool considers left
side of the road as forward direction of driving.
To consider right side of the road as forward
direction of driving, select Right from the drop
down list.

Enable Overlap Groups By default, the SD Map Viewer Tool enforces
junction location information to create junctions.
To create junctions using geometric overlaps,
clear this option.

Elevate Roads by Layer OpenStreetMap files does not contain road
elevation information and the imported files may
contain overlap roads. To elevate bridges using
layer information, enable this option. To get
better build results of elevated bridges, enable
the Preserve Heights and Auto Detect Bridges
options, as well.

Dependencies

• To access this option, you must have a
RoadRunner Scene Builder license.

• For SD Map Builder to elevate the roads, the
imported OpenStreetMap file must contain
layer information.

3 Import Data

3-42

Option Description
Create Turn Lanes Turn lane indicates the forward or backward

direction of the road in a bi-directional way. By
default, imported roads do not contain turn lane
markings. To include turn lane markings using
turn lane information, enable this option.

Dependencies

• To access this option, you must have a
RoadRunner Scene Builder license.

• For RoadRunner to include turn lane markings
in its built results, the imported
OpenStreetMap file must contain turn lane
information.

Auto Detect Bridges If you select this option, the SD Map Viewer
Tool creates bridges at road intersections when
the roads have different elevations. By default,
the tool extends the bridges by 20 meters on
either side of the intersection. You can change
the length of the extension by changing the
Bridge Span Inflation value. To prevent the tool
from creating bridges, clear this option. For more
information, see Road Construction Tool.

Dependencies

This option is applicable only when the Elevate
Roads by Layer option is enabled, and the
imported OpenStreetMap file contains layer
information.

Build Info Displays the link length and number of links in all
the imported data, as well as in the selected
subset of roads in the scene.

To build all roads in the scene, click Build All. If you want to build only a subset of the roads in the
scene, select the links you want to include in the scene, and click Build Selected.

For this example, use the default options to build the scene.

 Build Roads Using OpenStreetMap Data

3-43

You can also build roads by enabling the Elevate Roads by Layer and the Create Turn Lanes
options. Note that the city.osm file contains the layer and turn lane information.

Note To access the Elevate Roads by Layer and Create Turn Lanes options, you must have a
RoadRunner Scene Builder license.

You can visualize the elevated bridges and overpasses at roads and junctions with turn lane markings
in the built scene.

3 Import Data

3-44

After you build roads, you can modify the scene in RoadRunner. You can also export the scene to
ASAM OpenDRIVE file. For more information, see “Export to ASAM OpenDRIVE” on page 5-24.

If RoadRunner detects lane marking overlaps when building roads, then might display this message
in the SD Map Builder Results dialog box:

>WARNING: Lane marking overlaps detected. Adjust road centers at these
locations

To resolve this issue, open the Road Plan Tool, click-navigate to the overlap locations, and adjust the
road centers.

Troubleshoot Import and Build Issues
Depending on the region from which you build map data, you might encounter issues when the SD
Map Viewer Tool imports data and builds roads. Follow these steps to fix these known issues.

 Build Roads Using OpenStreetMap Data

3-45

Gap

Issue Solution
The built road contains gaps between roads at
intersections.

Open the Custom Junction Tool, navigate to the
affected junction, and increase the ray Distance
in the Attributes pane.

Steep Road Meshes

Issue Solution
The built road contains steep rises or falls in the
road meshes at road junctions.

Open the Corner Tool, navigate to the affected
junction, and reduce the Corner Radius in the
Attributes pane.

Roads Under Terrain

Issue Solution
The built scene contains roads under the terrain. Open the Surface Tool, navigate to the affected

location, and manually adjust the terrain.

3 Import Data

3-46

Limitations
• RoadRunner does not support direct import of live map data from openstreetmap.org.
• Because OpenStreetMap data does not contain elevation information for roads, RoadRunner

builds bridges or overpasses that cross a road as intersecting roads.
• Some issues with built roads might be due to missing or inaccurate map data in the

OpenStreetMap service. To check whether data is missing or inaccurate due to the map service,
view the map data on an external map viewer.

See Also
SD Map Viewer Tool | Custom Junction Tool | Corner Tool | Surface Tool

More About
• “Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data” on page 3-12
• “Export to ASAM OpenDRIVE” on page 5-24
• “Importing ASAM OpenDRIVE Files” on page 3-2

External Websites
• openstreetmap.org

 Build Roads Using OpenStreetMap Data

3-47

https://www.openstreetmap.org/
https://www.openstreetmap.org/

Design Scenes

• “Resolve Triangulation Issues in Junctions” on page 4-2
• “How Surfaces Work in RoadRunner” on page 4-4
• “Create Parking Garage” on page 4-12

4

Resolve Triangulation Issues in Junctions
In RoadRunner, a junction represents the complex intersection of multiple roadways, defining a space
where multiple surfaces compete for influence over the junction's final surface representation. Even
in simple intersections, roads can vary by width, length, bank angle, and elevation. Roads also vary by
features such as medians, curbs, and sidewalks, which need to be gracefully clipped from the final
result. The goal of RoadRunner software is to unify these overlapping regions into a single
representation suitable for simulation use cases. This unification often requires triangulating the
junction surface to export into various formats. This task is nontrivial and can often lead to
undesirable artifacts in the final junction triangulation.

To avoid common triangulation issues, use these tips.

Adjust Road Elevations
RoadRunner continually detects overlaps with neighboring roads and automatically creates junctions
for any roads which overlap within 2 vertical meters. However, given that each road is fully
independent, it is possible to create intersections that vary in grade, which can cause undesirable
triangulation artifacts. One way to resolve this issue is to adjust road elevations to match as closely as
possible within the junction.

From within the Road Plan Tool, the RoadRunner 2D Profile editor displays all overlapping roads for
any selected road. You can use the tool to raise or lower any road to match the height of other roads
by selecting and dragging either the height profile nodes or spans. Dragging a span is equivalent to
dragging the nodes on either end.

Bank Roads
When two or more roads that intersect have different slopes, the intersections might need to be
banked to better align the road surfaces. The RoadRunner Cross Section Tool offers an interface to
adjust road bank at lane boundary locations. To use this tool, select the road you want to edit, select a
cross section, and adjust the banking by using the 2D Cross section editor window.

4 Design Scenes

4-2

Use Slip Connections
RoadRunner offers a way to enforce height constraints between roads that have a dependent
relationship, such as a freeway and a freeway offramp. By creating slip roads, the end height and
slope of the slip road is constrained to that of the main road. To build a slip road, use the Slip Road
Tool to pull a slip road off of any other road in your scene.

 Resolve Triangulation Issues in Junctions

4-3

How Surfaces Work in RoadRunner
Using the Surface Tool, you can model surfaces around roads, such as walkways, driveways, parking
lots, and natural terrain. The terrain surface model interacts differently with various aspects of a
scene.

Terrain Surface Model
Terrain surfaces are region graphs bounded by curves. For more details about region graphs, see
“Region Graph Editing” on page 2-78.

RoadRunner creates some curves automatically, such as the curves on the boundaries of roads. You
can create other curves manually by using the Surface Tool.

Here is an example of a single terrain surface bounded by manually created surface curves:

The points on the graph edge curve are curve end nodes, which can be shared by multiple curves. In
most regards, these curves use the same UI concepts outlined in the “Curve Editing” on page 2-66
and “Polygon Editing” on page 2-68 topics.

In particular, each curve has a tangent direction that can be modified to change the shape of the
curve, as shown in this image:

4 Design Scenes

4-4

Each surface curve can have one surface connected to each side. The nodes can be shared by any
number of surface curves. In this manner, the surface curves form a contiguous (nonoverlapping)
patchwork of surfaces called a surface graph.

For example, you can split an initial surface into two surfaces by digitizing new surface curves in the
interior, taking care to share end nodes on the perimeter of the surface:

Surfaces also support enclosed surfaces, that is, surfaces within surfaces. Any time a loop of surface
curves lies entirely within the interior of another surface, it creates a new surface in the interior.

The following image shows two nested levels of enclosed surfaces:

 How Surfaces Work in RoadRunner

4-5

Avoid overlapping surfaces. Surfaces that overlap in the xy dimension cause visual artifacts, or "z-
fighting" artifacts.

These artifacts can be seen in the following example, where a new loop of surface curves crosses the
existing surface curves:

To correct this issue, you must split the original surface curves to introduce nodes. Multiple surface
curves then share these nodes

This image includes corrected nodes.

4 Design Scenes

4-6

Surfaces and Roads
Roads automatically participate in the surface graph.

Roads that lie entirely within a terrain surface behave much like enclosed surfaces. Terrain surface
curves are automatically created around the perimeter of the road network, forming an enclosed road
surface.

In the following image, a simple intersection that was created using the Road Plan Tool has been
digitized in the interior of the surface:

As with overlapping surfaces, roads that overlap a surface curve can cause visual artifacts.

For example, dragging the end of a road such that it crosses a surface curve causes artifacts:

 How Surfaces Work in RoadRunner

4-7

One way to correct this issue is to adjust the containing surface such that the roads are fully
enclosed:

You can also connect surfaces directly to roads. This connection enables surfaces to automatically
move when the roads are moved, helping to avoid overlaps.

In the following image, the three nodes attached to the roads are highlighted in red. The two nodes at
the end of the road are created automatically and cannot be removed or deleted in the Surface Tool.
Nodes can also be added parametrically along the side of a road. These points can be inserted
anywhere along a road, dragged along the road, or deleted.

4 Design Scenes

4-8

When surfaces are attached to these road surface nodes, moving the road automatically adjusts the
surfaces.

In the following image, the end of the road is moved clockwise:

Bridges
Only nonbridge portions of road surfaces participate in the surface graph. For more details, see the
Road Construction Tool. The surface graph ignores road construction spans that are marked as
bridges.

For example, the selected construction span in the following image is marked as a bridge:

 How Surfaces Work in RoadRunner

4-9

Note A bridge span that has similar elevation to the surfaces underneath it can produce visual
artifacts. To avoid artifacts, use the Road Height Tool to change the elevation of the bridge span so
that it is above the ground surface beneath it.

Extruded Surfaces
Surfaces have an optional height attribute. If the height is nonzero, the surface is vertically extruded
upwards. By increasing the height, you can create simple mock buildings, as shown here:

4 Design Scenes

4-10

Surfaces and Elevation
By default, the heights within a surface are automatically interpolated from the heights of the
surrounding surface curves.

For example, this image shows a surface containing curves that have a nonzero height, represented
as a positive z-coordinate:

In scenes with elevation maps, that is, Elevation Map Assets, each surface can optionally use the
elevation maps to define the interior elevations of the surface. For more details, see Control Whether
a Surface Uses Elevation Samples.

See Also
Surface Tool | Prop Point Tool | Prop Polygon Tool | Lane Marking Tool

Related Examples
• “Region Graph Editing” on page 2-78

 How Surfaces Work in RoadRunner

4-11

Create Parking Garage
This example shows how to create a parking garage structure in RoadRunner. The typical North
American parking garage consists of multiple repeated levels of parking spaces with a connecting
ramp, often with parking spaces, that links the levels together. To create a parking garage in
RoadRunner, follow these steps:

• Create a template of one level of the parking garage.
• Modify an instance of the template for the ground level.
• Copy, paste, translate, and connect instances of the parking garage level.
• Modify the top-level routes.
• Add any additional elements to the structure or surroundings.

The next sections describe the listed steps in detail.

Create a Parking Level Scene Template
Develop a single layer of the desired parking garage layout. This example considers an exterior lane
with a split-lane ramp connecting levels, and parking spaces on both sides of the ramp. Add the
parking spaces using the Lane Add Tool, Parking Tool, and Lane Marking Tool. Create the ends of
the garage using the Custom Junction Tool, with some adjustments to the radii. In this single layer,
the split lane ramp is at the same level as the exterior lane, which enables the layers to connect when
stacked.

Add additional props to the scene from the assets library, including:

• Posts — The posts, when stacked, become the structure of the garage.
• Extrusions — The extrusions form the interior and exterior guard rails of the garage.
• Stencils — The stencils, such as SLOW and YIELD, indicate expected the traffic flow in the

garage.

This figure shows a sample of the single layer of the parking garage.

4 Design Scenes

4-12

After completing a single layer of the parking garage, save the layer as a scene template. In the
menu, select Assets, then select New > Folder and name the folder Templates. Select New >
Scene Template to save the current layer. Choose a name, such as ParkingGarageLevel, for the
new asset. For more information on creating scene template assets, see “Create, Import, and Modify
Scene Assets” on page 2-58.

 Create Parking Garage

4-13

Create Ground Level
Create the ground level of the parking garage by modifying the parking garage level in the current
scene. The sample ground level scene includes these modifications:

• Surrounding grass, added using the Surface Tool.
• An outside street, with connection to the garage.
• Sidewalks surrounding the perimeter of the garage.
• Extra-wide accessible designated parking spaces near the garage entrance.
• Removal of some of the guardrail extrusions.

This figure shows the ground level of the parking garage.

4 Design Scenes

4-14

Add Levels to Parking Garage
From the RoadRunner Asset Library, drag and position the ParkingGarageLevel asset created in
the previous section. Align the new level horizontally with the ground level using the Posts props as
guides. Drag the green axis arrow to raise and lower the level until the level is at the desired height.
With the level still selected, copy (Ctrl+C) the level.

Note Once you click the axis arrow, do not release the button until the level is in the final, desired
position.

To add additional levels, paste (Ctrl+V) a copy of the previous level and repeat the previous
positioning steps until you have added desired number of levels. This figure shows a new level being
added to the garage.

 Create Parking Garage

4-15

On each level, select the ramp. Using either the Road Height Tool or 2D Editor, adjust the incline
of the ramp to connect it to the next level. You can use the Road Plan Tool to connect the ramp to
the next level. These figures show the ramp and 2D Editor

4 Design Scenes

4-16

On the top level of the garage, select and delete the ramp, as it does not connect to any level. Using
the Custom Junction Tool, modify the top level junction radii to fit over the Posts.

Complete Garage Structure
Complete the garage structure by either adjusting specific elements in each level, such as Posts, or
adding additional props to the scene from the RoadRunner Asset Library. In the sample parking
garage, Signs and Trees have been added to complete the scene. This image shows the final
parking garage scene.

 Create Parking Garage

4-17

See Also
Custom Junction Tool | Road Height Tool | Road Plan Tool | Surface Tool | “Create, Import, and
Modify Scene Assets” on page 2-58

4 Design Scenes

4-18

Export Scenes

• “Export to AutoCAD” on page 5-2
• “Export to FBX” on page 5-3
• “Export to glTF” on page 5-5
• “Export to OpenFlight” on page 5-6
• “Export to OpenSceneGraph” on page 5-7
• “Export to Wavefront OBJ” on page 5-8
• “Export to GeoJSON” on page 5-9
• “Export to USD” on page 5-15
• “Convert Asset Data Between RoadRunner and ASAM OpenDRIVE” on page 5-16
• “Export to ASAM OpenDRIVE” on page 5-24
• “Left-Hand Drive Export to ASAM OpenDRIVE” on page 5-39
• “Add Metadata to RoadRunner Scene Elements” on page 5-42
• “Set ASAM OpenDRIVE Attributes Using Metadata” on page 5-45
• “Export to ASAM OpenCRG” on page 5-48
• “Segmentation” on page 5-49
• “Downloading Plugins” on page 5-51
• “RoadRunner Metadata Export” on page 5-52
• “Export to Apollo” on page 5-54
• “Export to Metamoto” on page 5-58
• “Export to Unity” on page 5-59
• “Export to Unreal Using Datasmith (.udatasmith) File” on page 5-76
• “Export to Unreal Using Filmbox (.fbx) File” on page 5-85
• “Export to CARLA” on page 5-94
• “Export to VTD” on page 5-106
• “Customize Levels of Detail in Exported Scenes” on page 5-111
• “Export Custom Formats” on page 5-123
• “Export to STL” on page 5-129

5

Export to AutoCAD
You can export RoadRunner scenes to the AutoCAD DXF file format.

AutoCAD Export
From the File menu, select Export, then AutoCAD (.dxf) to open the Export AutoCAD dialog box.
Then, specify a path to which to export the file, and click Export. Before exporting, you can optionally
set these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Embed Textures

Embed the exported textures inside the exported file.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

5 Export Scenes

5-2

Export to FBX
RoadRunner can export scenes to the FBX file format. Although this option is compatible with Unity
and Unreal®, for those applications, using the specific export option along with MathWorks plugins is
recommended.

FBX Export
From the File menu, select Export, then Filmbox (.fbx) to open the Export Filmbox dialog box.
Then, specify a path to which to export the file, and click Export. Before exporting, you can optionally
set these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Embed Textures

Embed the exported textures inside the exported file.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

Advanced Details
Node Naming

• All nodes have "Node" appended to the end of their name (for example, RoadsNode).
• Props have their GUID prepended to the front of their name (for example, {40ce66ca-

c817-425b-8802-17cdbd76371f}Signal_Post_30ftNode).

• Props generated from a curve, polygon, or span share GUIDs with the associated curve,
polygon, or span.

• During export, all node names in the scene graph are made to be unique.

• _# is appended for duplicate node names (for example, light_green_1Node).
• Because the scene graph is not a tree, duplicate names are still possible when converting to

FBX if there are multiple instances of the same node (such as when reusing props).

 Export to FBX

5-3

• When the mesh is split by segmentation, the roads and terrain have extra child nodes for each
segmentation type it has, with the segmentation type appended to the name (for example,
Road_SidewalkNode).

• When the mesh is split by transparency sorting layer (for the Unreal on page 5-85 export option),
the roads and terrain have extra child nodes for each sorting layer, with the layer number
appended to the name (for example, Roads_Layer2Node).

• This can also be combined with the segmentation type (for example,
Road_Sidewalk_Layer0Node).

• For traffic signals (see Signal Tool), the name of the variant is added to the FBX name (for
example, {4674ef2e-
deea-403c-9b52-487e0ba9f13d}Signal_3Light_Bare01_RedYellowGreen LeftNode).

Material Details

• Materials are converted into FbxSurfacePhong materials.
• When the mesh is split by segmentation, the segmentation type is appended to the material name

(for example, Concrete1_Curb).
• When materials need a transparency sorting order defined (typically for overlapping transparent

markings), a duplicate of the material is created.
• Materials with duplicate names add _# to distinguish between them (for example, Leaves_1).

• This can be combined with the segmentation type (for example, OilPath01_Road_1).

Light Source Parameters

When you import FBX file assets containing light sources, the parameters that control lighting
effects, such as color and brightness, are carried through to exported FBX files.

FBX Scene Settings

RoadRunner exports scenes with the Maya Z-up axis system. Units are in meters.

Combo Exports

Other export options combine the FBX export with other files. Depending on the target application,
the RoadRunner software applies extra changes.

• Unity on page 5-59: Mesh is identical to the normal FBX export option.
• Unreal on page 5-85: Mesh is split by transparency sorting order.
• CARLA on page 5-94: Mesh is split by segmentation and transparency sorting order.

See Also

Related Examples
• “Customize Levels of Detail in Exported Scenes” on page 5-111

5 Export Scenes

5-4

https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_surface_phong_html
https://help.autodesk.com/cloudhelp/2017/ENU/FBX-Developer-Help/cpp_ref/class_fbx_axis_system.html#a94d8621d6500f5bbc2bfa4cab2eb7b25

Export to glTF
RoadRunner can export scenes to the GL Transmission Format (glTF) and GL Transmission Format
Binary File (glb).

glTF Export
From the File menu, select Export, then glTF (.gltf, .glb) to open the Export glTF dialog box. Then,
specify a path to which to export the file, and click Export. Before exporting, you can optionally set
these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

Limitations
RoadRunner follows the glTF 2.0 specification as much as possible, but there are some limitations.

• Texture sampler information is not exported. This limitation might result in texture clamping
issues for objects like signs.

• RoadRunner uses a specular setup for materials. Because glTF uses metallic-roughness by default,
RoadRunner attaches whatever is in the "Specular Map" slot to the "metallicRoughnessTexture" in
the exported material and sets the "metallicFactor" to 0.

 Export to glTF

5-5

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0

Export to OpenFlight
RoadRunner can export scenes to the OpenFlight (.flt) file format.

OpenFlight Export
From the File menu, select Export, then OpenFlight (.flt) to open the Export OpenFlight dialog box.
Then, specify a path to which to export the file, and click Export. Before exporting, you can optionally
set these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

Limitations
• Texture wrapping settings are not exported. This limitation might result in texture clamping issues

for objects like signs.
• The OpenFlight file is exported through the OpenSceneGraph plugin, which exports OpenFlight

version 16.1.
• RoadRunner does not export the normal or specular maps for materials.

5 Export Scenes

5-6

Export to OpenSceneGraph
RoadRunner can export scenes to various OpenSceneGraph file formats, including .osg, .osgb,
and .ive.

OpenSceneGraph Export
From the File menu, select Export, then OpenSceneGraph (.osg, .osgb, .ive) to open the Export
OpenSceneGraph dialog box. Then, specify a path to which to export the file, and click Export.
Before exporting, you can optionally set these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Embed Textures

Embed the exported textures inside the exported file.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

Limitations
• Texture wrapping settings are not exported. This limitation might result in texture clamping issues

for objects like signs.
• RoadRunner does not export the normal or specular maps for materials.

 Export to OpenSceneGraph

5-7

Export to Wavefront OBJ
RoadRunner can export scenes to the Wavefront OBJ (.obj) file format.

Wavefront Export
From the File menu, select Export, then Wavefront (.obj) to open the Export Wavefront dialog box.
Then, specify a path to which to export the file, and click Export.

Advanced Details
This code shows an example of a material in an exported Material Library (.mtl) file:
newmtl Grass1 # Material Name
illum 2 # Color with specular highlights
Ka 1.000000 1.000000 1.000000 # Ambient color matches the diffuse
Kd 1.000000 1.000000 1.000000 # Diffuse color
Ks 0.039216 0.039216 0.039216 # Specular color
Ns 800.200012 # Specular exponent, approximated from the Roughness value
Tr 0.000000 # Transparency
map_Kd Grass1_Diff.png # Diffuse Map
map_bump Grass1_Norm.png # Normal Map
map_Ks Grass1_Spec.png # Specular Map

5 Export Scenes

5-8

Export to GeoJSON
GeoJSON Overview
RoadRunner can export scenes to a GeoJSON file format. The GeoJSON file format is a JavaScript
Object Notation(JSON) based open standard format for representing geospatial data. This format
defines objects to represent geographical features. A GeoJSON object comprises one or more
geometries, a feature or a collection of features. A geometry in GeoJSON format represents a basic
shape such as points, surfaces, and curves. All GeoJSON geometries consist of at least a type
property and a coordinates property. The geometry types supported by the GeoJSON format are
Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon. Point and
LineString are the simplest geometry type which are represented by a single coordinate and a set
of coordinates respectively. Polygon geometries are comparatively complex and may contain inner
and outer polygons. They are represented by a multi-dimensional array of coordinates.

In real world, other properties may also be required to represent geographical data adequately, apart
from their geometry. To represent additional properties and their geometries collectively, a Feature
is used. A FeatureCollection consists of multiple features. This snippet shows a simple GeoJSON
FeatureCollection object that specifies the geometry and the properties for a feature:
{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [[30.0, 10.0], [40.0, 40.0], [20.0, 40.0], [10.0, 20.0], [30.0, 10.0]]
]
 },
 "properties": {
 "name": "desert"
 }
 }
]
}

In RoadRunner, the GeoJSON format is meant to complement the ASAM OpenDRIVE file format and
fill in some of its missing geospatial data, but this format can also be used independently too.

GeoJSON Export
From the File menu, select Export , then select GeoJSON (.geojson) to open the Export GeoJSON
dialog box. Then, specify a path to which you want to export the file to, and click Export.

Export Options
Before clicking Export, you can optionally select the Reduce file size parameter in the Export
GeoJSON dialog box.

Leaving the Reduce file size option unchecked formats the contents of the exported GeoJSON file in
a human readable form. The snippet below shows a sample data in GeoJSON format when the
Reduce file size option is not selected.
 {
 "type": "Feature",

 Export to GeoJSON

5-9

 "geometry": {
 "type": "Point",
 "coordinates": [57.6, 98.2]
 },
 "properties": {
 "name": "London"
 }
}

Selecting the Reduce file size option formats the contents of the exported GeoJSON file in a compact
format, which might be difficult for the user to read. It also reduces the size of the exported file. The
snippet below shows the previous sample data in GeoJSON format when the Reduce file size option
is selected.
 {"type":"Feature","geometry":{"type":"Point","coordinates":[57.6,98.2]},"properties":{"name":"London"}}

Sample Exported GeoJSON File
The MathWorks version of the GeoJSON format is a collection of lanes, lane boundaries, junctions,
gates, crosswalks, and signals.

This code shows a sample exported GeoJSON file.
'#' are double values compliant with JSON
{
 "features": [{
 "geometry": {
 "coordinates": [[#,#,#], ...],
 "type": "LineString"
 },
 "properties": {
 "Id": 1,
 "LaneType": "Curb",
 "LeftBoundary": {
 "Dir": "Forward",
 "Id": 0
 },
 "Predecessors": [{
 "Dir": "Forward",
 "Id": 4
 }],
 "RightBoundary": {
 "Dir": "Forward",
 "Id": 5
 },
 "Successors": [{
 "Dir": "Backward",
 "Id": 6
 }],
 "TravelDir": "Undirected",
 "Type": "Lane"
 },
 "type": "Feature"
 },
 {
 "geometry": {
 "coordinates": [[#,#,#], ...],
 "type": "LineString"
 },
 "properties": {
 "Id": 0,
 "LeftLane": {
 "Dir": "Forward",
 "Id": 1
 },
 "RightLane": {

5 Export Scenes

5-10

 "Dir": "Forward",
 "Id": 2
 },
 "Type": "LaneBoundary"
 },
 "type": "Feature"
 },
 {
 "geometry": {
 "coordiantes": [[[[#,#,#], …], …], …],
 "type": "MultiPolygon"
 },
 "properties: {
 "Id": 12,
 "Type": "Junction",
 "Gates": [{"Id": 775}, …],
 "Lanes": [{"Id": 52}, …],
 "Phases": [
 "Phases": [{
 "Intervals": [{
 "BulbStates": [{"Id":0, "On": false, "SignalId": 767}, …],
 "GateStates": [{"Id": 775, "State": "StopYield"}, …]
 }]
 }]
]
 },
 "type": "Feature"
 },
 {
 "geometry": {
 "coordinates": [[#,#,#], …],
 "type": "LineString"
 },
 "properties": {
 "Id": 775,
 "Lane": {"Id": 233"},
 "Signals": [{"Id":771}, …],
 "Type": "Gate"
 },
 "type": "Feature"
 },
 {
 "geometry": {
 "coordinates": [[[#,#,#], …], …],
 "type": "Polygon"
 },
 "properties": {
 "Id": 763,
 "Bulbs": [
 {
 "Point": [#,#,#],
 "Name": "LeftTurnRed",
 "NodeName": "light_red"
 },
 …
],
 "Name": "PathToFile.fbx",
 "SignalType": "Signal",
 "Type": "Signal"
 },
 "type": "Feature"
 }]
}

Traffic Signal Phases in GeoJSON
Most of the information in the GeoJSON files describe the geometry of a scene. The Phases sections
of these files describe the traffic light phases of signals at each junction.

 Export to GeoJSON

5-11

Consider a junction with three signal phases, with each one containing green-yellow-red intervals of
varying durations. This figure shows such a sample phase as it appears in the 2D Editor.

This GeoJSON snippet corresponds to the first traffic phase. Some of the data for this phase has been
omitted for clarity.

"Phases": [
 {
 "Intervals": [
 {
 "BulbStates": [
 {
 "Id": "{8bedd7ab-7e17-4177-b095-ddca457e6985}",
 "On": false,
 "SignalId": "{cc65a9c4-f47c-465b-8a8f-ae7c7e2aca50}"
 },
 .
 .
 .
],
 "GateStates": [
 {
 "Id": "{3233fba0-a5b6-4f09-a442-2e0ddc07c4c0}",
 "State": "Go"
 },
 .
 .
 .
],
 "Time": 10,
 "Type": "Green"
 },
 {
 "BulbStates": [
 {
 "Id": "{8bedd7ab-7e17-4177-b095-ddca457e6985}",
 "On": false,
 "SignalId": "{cc65a9c4-f47c-465b-8a8f-ae7c7e2aca50}"

5 Export Scenes

5-12

 },
 .
 .
 .
],
 "GateStates": [
 {
 "Id": "{3233fba0-a5b6-4f09-a442-2e0ddc07c4c0}",
 "State": "Go"
 },
 .
 .
 .
],
 "Time": 4,
 "Type": "Yellow"
 },
 {
 "BulbStates": [
 {
 "Id": "{8bedd7ab-7e17-4177-b095-ddca457e6985}",
 "On": true,
 "SignalId": "{cc65a9c4-f47c-465b-8a8f-ae7c7e2aca50}"
 },
 .
 .
 .
],
 "GateStates": [
 {
 "Id": "{3233fba0-a5b6-4f09-a442-2e0ddc07c4c0}",
 "State": "Stop"
 },
 .
 .
 .
],
 "Time": 1,
 "Type": "Red"
 }
]
 },
 {
 "Intervals": [
 .
 .
 .
]

The Time and Type values specify that the first phase has a green interval that lasts 10 seconds, a
yellow interval that lasts 4 seconds, and a red interval that lasts 1 second.

Each BulbStates section lists the unique ID of a traffic light bulb in the scene. In full GeoJSON files,
you can find the bulb specification by searching for this ID. In the first (green) interval, the first bulb
in BulbStates has an ID of 8bedd7ab-7e17-4177-b095-ddca457e6985 with its "On" state set to
false. In the full GeoJSON file (not shown here), this bulb is specified as being light red. Therefore,

 Export to GeoJSON

5-13

it is expected that the bulb is off at this phase. In the GeoJSON file snippet, you can see that the bulb
with this ID is also off in the second (yellow) interval but is then on in the third (red) interval.

Each GateStates section lists the unique ID of a maneuver gate in the junction and what its state is
during each interval. As with the bulbs in the BulbStates sections, the gates in the GateStates
sections are repeated in each interval, with only the states differing at each interval.

Though not shown in this GeoJSON snippet, the full GeoJSON file includes two additional Intervals
sections for the two remaining intervals in the phase.

See Also

More About
• “Export to ASAM OpenDRIVE” on page 5-24
• “Importing ASAM OpenDRIVE Files” on page 3-2

5 Export Scenes

5-14

Export to USD
RoadRunner can export to the Universal Scene Description (USD) file format.

USD Export
From the File menu, select Export, then USD (.usd, .usdc, .usda) to open the Export USD dialog
box.

Specify a path to which to export the file, and click Export. Setting the file extension to .usd
or .usdc creates a USD binary file. Setting the extension to .usda creates a USD ASCII file.

Before exporting, you can optionally set these parameters.

Split by Segmentation

Split meshes by their segmentation type. For more details, see Segmentation on page 5-49.

Power of Two Texture Dimensions

Resize the dimensions of exported textures by rounding them up to the next highest power of two.

Export to Tiles

Split the meshes per tile. This parameter also groups props by the tile that they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• The Tile Size parameter specifies the (x,y) dimensions of the exported tiles. Units are in pixels.
• The Tile Center parameter specifies the (x,y) location of the tile centers, which is (0,0) by default.
• If you enable the Export Individual Tiles parameter, then RoadRunner exports each tile as a

separate file. The files follow this naming convention: ExportedFileName_Tile_0_0.ext,
ExportedFileName_Tile_1_0.ext, and so on.

Limitations
There are several limitations with the UsdPreviewSurface schema, which limits the ability to map
RoadRunner materials to USD materials. Here is a list of known issues:

• UsdPreviewSurface cannot support diffuse color scaling and vertex coloring at the same time.
RoadRunner sets the texture reader's scale to the diffuse color of the material. However, vertex
colors and a primvar reader for them are still included if you want to use them.

• Because UsdPreviewSurface does not support specifying a rendering order, overlapping
transparent surfaces are not supported.

• Because the double-sided attribute is stored per mesh instead of per material, it is not exported.
Therefore, some props (mainly trees) might not render properly.

 Export to USD

5-15

Convert Asset Data Between RoadRunner and ASAM
OpenDRIVE

RoadRunner enables you to import scenes from and export scenes to the ASAM OpenDRIVE (.xodr)
file format.

RoadRunner assets are represented in ASAM OpenDRIVE using parent elements, such as Objects,
Signals, and Markings, and child elements, such as Type, SubType, FilePath, in an XML
configuration file. During the export process, RoadRunner uses this configuration file to map the
existing assets in the scene to the appropriate parent element and child element for ASAM
OpenDRIVE representation. During the import process, RoadRunner resolves the mapping between
ASAM OpenDRIVE and the existing RoadRunner assets in the current project. RoadRunner then uses
this mapping to place the assets in the scene.

To specify assets when importing, and to specify Type or Subtype when exporting scenes to the
ASAM OpenDRIVE file format, you can modify the asset mapping file manually or interactively.
information on how to customize assets interactively, see “Configure Asset Mapping File
Interactively” on page 5-20.

Open Asset Configuration File
The asset configuration file is an XML file named OpenDriveAssetData.xml. Each RoadRunner
project has its own OpenDriveAssetData.xml configuration file, which is shared by all the scenes
in the project. This file is located in the Project folder of the RoadRunner project.

Open the OpenDriveAssetData.xml file from this location, where ProjectFolder is the path to
the folder of the RoadRunner project. For more details on the project folder layout, see “RoadRunner
Project and Scene System” on page 2-2.

ProjectFolder/Project/OpenDriveAssetData.xml

Explore File Structure
The OpenDriveAssetData.xml file has a top-level element, OpenDriveAssetData, containing
Objects, Signals, and Markings elements that specify props, signals, and lane markings,
respectively.

This XML code shows a template of the OpenDriveAssetData.xml file, and lists the significance of
the element tags. The Type and FilePath are required fields for Objects, Signals, and Markings
tags, whereas others are optional fields that may only be required during import. For more details
about these elements, see “ASAM OpenDRIVE Representations” on page 5-26.
<?xml version="1.0"?>
<OpenDriveAssetData>
 <Objects>
 ...
 <Object>
 <Type> OpenDRIVE "type" </Type> (Required for Export-Optional for Import)
 <Id> OpenDRIVE object "id" </Id> (Optional-only used for Import)
 <Name> OpenDRIVE object "name" </Name> (Optional-only used for Import)
 <Radius> OpenDRIVE object "radius" </Radius> (Optional-only used for Import)
 <Height> OpenDRIVE object "height" </Height > (Optional-only used for Import)
 <FilePath> Relative file path to RoadRunner asset </FilePath> (Required)
 </Object>
 ...

5 Export Scenes

5-16

 </Objects>
 <Markings>
 ...
 <RoadMark>
 <Type> OpenDRIVE "type" </Type> (Required for Export-Optional for Import)
 <Color> OpenDRIVE "color" </Color> (Optional)
 <FilePath> Relative file path to RoadRunner asset </FilePath> (Required)
 </RoadMark>
 ...
 </Markings>
 <Signals>
 ...
 <Signal>
 <Type> OpenDRIVE "type" </Type> (Required for Export-Optional for Import)
 <SubType> OpenDRIVE "subtype" </SubType> (Optional)
 <Id> OpenDRIVE signal "id" </Id> (Optional-only used for Import)
 <Name> OpenDRIVE signal "name" </Name> (Optional-only used for Import)
 <Country> OpenDRIVE signal "country" </Country> (Optional-only used for Import)
 <Value> OpenDRIVE signal "value" </Value> (Optional-only used for Import)
 <FilePath> Relative file path to RoadRunner asset </FilePath> (Required)
 <Variant> Variant of RoadRunner signal/sign asset (integer, where 0 is the first variant, 1 is the second, etc.) </Variant> (Optional - only used for Import)
 </Signal>
 ...
 </Signals>
</OpenDriveAssetData>

Configure Assets for Export
Use this process to configure assets for export:

1 Open the OpenDriveAssetData.xml file in a text editor. When you create a new project, the
associated OpenDriveAssetData.xml file contains template code that you can modify.

2 Add corresponding Object, Signal, or Marking entries in the configuration file for unmapped
props, signs, signals, or markings, and for additional assets that you have added to your scene in
the RoadRunner canvas.

For example, after adding a Drum01 (prop), ContinentalCrosswalk (marking), and
Sign_CrossRoadAhead (signal) to a scene, the OpenDriveAssetData.xml configuration file
has this structure:
<?xml version="1.0"?>
<OpenDriveAssetData>
 <Objects>
 ...
 <Object>
 <Type>obstacle</Type>
 <FilePath>Props/TrafficControl/Drum01.fbx_rrx</FilePath>
 </Object>
 ...
 </Objects>
 <Markings>
 ...
 <RoadMark>
 <Type>broken</Type>
 <FilePath>Markings/DashedSingleWhite.rrlms</FilePath>
 </RoadMark>
 ...
 </Markings>
 <Signals>
 ...
 <Signal>
 <Type>Sign_CrossRoadAhead</Type>
 <FilePath>Signs/Sign_CrossRoadAhead.svg_rrx</FilePath>
 </Signal>
 ...
 </Signals>
</OpenDriveAssetData>

 Convert Asset Data Between RoadRunner and ASAM OpenDRIVE

5-17

Use obstacle as the Type for the Drum01 asset. To determine the standard Type values for
other assets, refer to ASAM OpenDRIVE 1.4 (or 1.5) Object Type specifications.

To determine the FilePath value for Drum01, navigate to the Library Browser in RoadRunner.
Under the Props folder, select the TrafficControl folder and click Drum01. In the Attributes
pane, the text Drum01.fbx_rrx next to the Prop Model label is the file name for the prop
Drum01.The relative file path is constructed by navigating through the folders Props and
TrafficControl to locate the file Drum01.fbx_rrx. Hence, the value for the FilePath tag
for Drum01 is /Props/TrafficControl/Drum01.fbx_rrx.

3 Save your project and export it to an ASAM OpenDRIVE file. You do not need to restart
RoadRunner after creating or modifying the OpenDriveAssetData.xml file.

To verify that the object Drum01 has been exported correctly in the ASAM OpenDRIVE format,
select the OpenDRIVE Export Preview Tool

5 Export Scenes

5-18

The Object Type is obstacle, which implies that the RoadRunner asset has been mapped
correctly to the ASAM OpenDRIVE representation.

If a prop or a signal is missing in the OpenDriveAssetData.xml file, its Object Type is -1 in
the OpenDRIVE Export Preview Tool. For example, if you add the prop Luminaire_Arm_12ft to
the scene editing canvas, but not to the configuration file, the Object Type displays as -1 in the
OpenDRIVE Export Preview Tool because it is not configured in the corresponding
OpenDriveAssetData.xml file.

 Convert Asset Data Between RoadRunner and ASAM OpenDRIVE

5-19

For information on how to configure <Objects>, <Markings>, and <Signals> interactively using
the Asset Mapping dialog box, see “Configure Asset Mapping File Interactively” on page 5-20.

Configure Imported Assets
The ASAM OpenDRIVE import option in RoadRunner uses an OpenDriveAssetData.xml
configuration file to convert ASAM OpenDRIVE data to the internal road format by mapping ASAM
OpenDRIVE representations to RoadRunner assets. For more details about importing an ASAM
OpenDRIVE file into RoadRunner, see “Importing ASAM OpenDRIVE Files” on page 3-2.

An object, roadMark, or signal defined in the imported ASAM OpenDRIVE file may not have a
type value specified or may have an undefined type value of -1. In this case, you can use other
attributes such as name, height, and radius to correlate ASAM OpenDRIVE representations to
RoadRunner assets.

For example, this imported ASAM OpenDRIVE snippet shows that type=-1 for object id=21.
<?xml version="1.0" encoding="UTF-8"?>
<OpenDRIVE>
 ...
 <objects>
 <object id="21" type="-1" name="post" height="3.65" radius="0.05"/>
 </objects>
 ...
</OpenDRIVE>

Use the name attribute in the OpenDriveAssetData.xml configuration file to identify the object.
<Object>
 <Name>post</Name>
 <Height>3.65</Height>
 <FilePath>Props/Signals/Signal_Post_12ft.fbx</FilePath>
</Object>

Note The OpenDriveAssetData.xml file is case-sensitive. The mappings are expected to be upper-
case, for example, <Type>pole</Type>.

Note that this is different than the lower-case attributes in ASAM OpenDRIVE files, for example
type="pole".

For information on how to configure <Objects>, <Markings>, and <Signals> interactively using
the Asset Mapping dialog box, see “Configure Asset Mapping File Interactively” on page 5-20.

Configure Asset Mapping File Interactively
In the Assets menu, select Asset Mapping to open the Asset Mapping dialog box. set Select Map
type: to ASAM OpenDRIVE. This enables the Objects, Markings, and Signals tabs, which you can
use to interactively map assets by updating the OpenDriveAssetData.xml configuration file. For
more information on the configuration file, see “Explore File Structure” on page 5-16.

5 Export Scenes

5-20

In each tab, you can click an entry to select it or double-click it to edit it.

Double-click an entry in the FilePath column to enable a ... button. Click the button to browse to and
specify assets from the Assets folder.

To configure objects interactively, select the Objects tab and edit these table entries.

• Type — Object type, based on the valid types specified by the ASAM OpenDRIVE Map service.
• Id — Object ID, based on the valid IDs specified by the ASAM OpenDRIVE Map service.
• Name — Object name, based on the valid names specified by the ASAM OpenDRIVE Map service.
• ReferencePosition — Object reference position, specified by the ASAM OpenDRIVE Map service.
• Radius — Object radius, specified by the ASAM OpenDRIVE Map service.
• Height — Object height, specified by the ASAM OpenDRIVE Map service.
• Ignore — If true, RoadRunner ignores the object while exporting the scene. Otherwise,

RoadRunner includes the object while exporting.

 Convert Asset Data Between RoadRunner and ASAM OpenDRIVE

5-21

• FilePath — Path to the asset file used to render the object. This path is relative to the Assets
folder of the RoadRunner project.

To configure road markings interactively, select the Markings tab and edit these table entries.

• Type — Road marking type, based on the valid types specified by the ASAM OpenDRIVE Map
service.

• Color — Road marking color, based on the valid colors specified by the ASAM OpenDRIVE Map
service.

• FilePath — Path to the asset file used to render the road marking. This path is relative to the
Assets folder of the RoadRunner project.

To configure signals interactively, select the Signals tab and edit these table entries.

• Type — Signal type, based on the valid types specified by the ASAM OpenDRIVE Map service.
• SubType — Signal subtype, based on the valid subtypes specified by the ASAM OpenDRIVE Map

service.
• Id — Signal ID, based on the valid IDs specified by the ASAM OpenDRIVE Map service.
• Name — Signal name, based on the valid names specified by the ASAM OpenDRIVE Map service.
• ReferencePosition — Signal reference position, specified by the ASAM OpenDRIVE Map service.
• Country — Country name, based on the valid names specified by the ASAM OpenDRIVE Map

service.
• Variant — Signal variant, based on the valid variants specified by the ASAM OpenDRIVE Map

service.
• Value — Signal value, specified by the ASAM OpenDRIVE Map service.
• FilePath — Path to the asset file used to render the signal. This path is relative to the Assets

folder of the RoadRunner project.

Note For each tab, you can map a default asset. Use the default entry in the table to specify the
path to the asset.

When you select an entry in the table, the Asset Mapping dialog box displays a preview of that asset.
If the file path for the asset is invalid, the preview does not display and the path entry renders in red.

Note Previews are not displayed for invalid file paths and these paths are represented red.

You can select multiple entries in the table by clicking the check box next to each entry you want to
select. Selecting entries enables the Remove Selected Entries button. Click this button to remove
the selected entries. You can also add new entries for mapping assets by clicking Add New Entry.

Save the customized asset mappings to the OpenDriveAssetData.xml configuration file by clicking
Apply Changes.

You can discard the changes by clicking Cancel. Clicking Cancel returns a prompt confirming
whether you want to apply the changes, discard the changes, or cancel the operation and return to
asset mapping.

5 Export Scenes

5-22

See Also
OpenDRIVE Viewer Tool | OpenDRIVE Export Preview Tool

More About
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Export to ASAM OpenDRIVE” on page 5-24

External Websites
• ASAM OpenDRIVE

 Convert Asset Data Between RoadRunner and ASAM OpenDRIVE

5-23

https://www.asam.net/standards/detail/opendrive/

Export to ASAM OpenDRIVE
RoadRunner can export scenes to the ASAM OpenDRIVE (.xodr) file formats.

ASAM OpenDRIVE Overview
RoadRunner can export scenes to OpenDRIVE 1.4, OpenDRIVE 1.5, and ASAM OpenDRIVE 1.6
formats. The ASAM OpenDRIVE export option exports an ASAM OpenDRIVE (.xodr) file containing
the layout of the scene and an associated MathWorks GeoJSON file.

Export to ASAM OpenDRIVE
From the menu, select File > Export > ASAM OpenDRIVE (.xodr).

To preview the ASAM OpenDRIVE export and explore exported data interactively, use the
OpenDRIVE Export Preview Tool.

Export Options
The Export ASAM OpenDRIVE dialog box has several options to conform to various simulator needs.

Options Description
Version Specifies the ASAM OpenDRIVE file versions that

you can select for export. Select the value as:

• OpenDRIVE 1.4 to export the scene to
OpenDRIVE 1.4 file version.

• OpenDRIVE 1.5 to export the scene to
OpenDRIVE 1.5 file version.

• ASAM OpenDRIVE 1.6 to export the scene to
ASAM OpenDRIVE 1.6 file version.

Database Version A user-defined identifier for the exported scene.
Useful for versioning exports of the same scene.

Database Name A user-defined name for the exported scene.
Driving Side A hint to the exporter for the driving side of the

scene. Travel direction is explicitly defined in
RoadRunner using the Lane Travel Direction.

The travel direction in ASAM OpenDRIVE is
implicit based on the country and side of the
road.

Enforce connected road continuity Select this attribute to enforce continuity
between the reference lines of roads connected
end-to-end. This option is enabled by default.

Export markings as <line> Select this attribute to export additional lane
marking data (spacing, dash length, and
individual paint strip widths).

5 Export Scenes

5-24

Options Description
Export signals Select this attribute to export all signals and

signs mapped to junctions as <signal> entries.

This selection applies only to signals and signs
that have been associated with junctions (using
the Signal Tool). Refer to the Traffic Signals and
Signs on page 5-35 section.

Export objects Select this attribute to export all props as
<object> entries. Refer to “Convert Asset Data
Between RoadRunner and ASAM OpenDRIVE” on
page 5-16 .

Export hOffset relative to orientation Select this attribute to export the <hOffset>
(heading offset) values of <signal> entries as
being relative to <orientation>, which is the
direction of travel of the road that the signal
applies to. By default, the heading offset is
relative to the heading of the road, regardless of
its direction of travel

Export conflict points Select this attribute to export an <object> entry
for every point in a junction where two roads
intersect.

Export scene origin reference Select this attribute to export a point at 0,0 in the
scene. This point enables a connection between
FLT or IVE files and the exported ASAM
OpenDRIVE file. This point is contained in a
<road> entry with no lanes that is positioned at
the far left edge of the scene, nested within an
<object> entry.

Clamp distances (prevents very short roads) Select this attribute to clamp distances in the
RoadRunner scene to be a multiple of 1 cm to
prevent very short roads.

Note This clamping is performed on the scene
itself, so it can cause very small changes to the
roads in the scene.

Export OpenCRG and Synthetic OpenCRG
Options

Select this option to export road surface data
assigned to different road segments to the ASAM
OpenCRG file format. For more information, see
“Export to ASAM OpenCRG” on page 5-48.

 Export to ASAM OpenDRIVE

5-25

Options Description
Road Data Format Specifies the road data format for the output

ASAM OpenCRG file. Select from these options:

• LRFI (default) — Long, real, formatted,
interchangeable data format

• LDFI — Long, double, formatted,
interchangeable data format

Dependencies

To enable this attribute, select the Export
OpenCRG and Synthetic OpenCRG Options
attribute.

ASAM OpenDRIVE Representations
This section describes how various types of RoadRunner objects are represented in ASAM
OpenDRIVE. The Attributes and the Metadata panes contain the description for the elements in a
RoadRunner scene. You can use the Metadata pane to add custom attributes or set an attribute value
when exporting the scene to ASAM OpenDRIVE format. This section explains how the scene elements
and their attributes are represented in ASAM OpenDRIVE. For information about how the metadata is
exported to ASAM OpenDRIVE, see “Add Metadata to RoadRunner Scene Elements” on page 5-42
and Set OpenDRIVE Attributes Using Metadata on page 5-45.

Roads, Lanes, and Junctions

Roads, lanes, and junctions are exported to ASAM OpenDRIVE using the standard <road>, <lane>,
and <junction> entries. Roundabouts are also composed of roads. Hence, roundabouts are exported
as the roads.

5 Export Scenes

5-26

For each road in a scene, RoadRunner creates one or more <road> entries. Whenever a road ends or
a junction begins or ends, RoadRunner creates a unique <road> entry. ASAM OpenDRIVE <road>
entries cannot extend through a junction, so the geometry is cut and exported as separate roads.

Note The <shape>, <crossfall>, <surface>, and <railroad> entries are not used.

ASAM OpenDRIVE 1.6 requires any two roads connected end-to-end in a scene meet exactly,
indicated by an unbroken reference line between them. Enforce connected road continuity option,
selected by default in the Export ASAM OpenDRIVE dialog box during export, ensures that connected
roads in your scene fulfill this ASAM OpenDRIVE 1.6 connection requirement.

This figure shows an offset between the red reference lines of two roads that are connected end-to-
end without the Enforce connected road continuity option enabled. The discontinuity between the
reference lines does not load the scene properly after export.

This figure shows the same two roads that are connected end-to-end with the Enforce connected
road continuity option enabled. The Enforce connected road continuity option produces
continuity between the red reference lines of the two roads, aligning them with one another.

 Export to ASAM OpenDRIVE

5-27

For each lane in a scene, RoadRunner creates one or more <lane> entries. The resulting <lane>
entry is placed on one side or the other of the center lane, depending on its travel direction or the
travel direction of neighboring lanes and the selected Driving Side during export. Whenever a lane
starts or ends, RoadRunner creates a new <laneSection> entry.

Note The level flag in <lane> entries is not used. The <height>, <material>, <visibility>,
and <access> entries are also not used.

For each junction in a scene, RoadRunner creates a <junction> entry. RoadRunner exports some
junctions as one <junction> entry due to overlapping maneuver roads or corners. A connecting
<road> entry is exported for each maneuver road in each junction. Where possible, the exporter
prefers the geometry and lane markings of nonmaneuver roads that extend through the junction. The
resulting geometry of each connecting road might be the combination of multiple maneuver and
nonmaneuver roads.

Note The <priority> entry is not used.

Props

5 Export Scenes

5-28

Note Prop polygons are not exported, but if you run the bake operation to convert them to points,
you can export them in point format. See Prop Polygon Tool.

With the exception of traffic signals and signs (see below), point props are exported as ASAM
OpenDRIVE <object> instances. The exported prop includes sufficient information to identify the
prop type and the oriented bounding box (OBB) of the prop model.

In ASAM OpenDRIVE, objects are stored on roads. The position and orientation of a given object
depends on the geometry of the road it is assigned to. RoadRunner props are freely positioned in the
world, so the export process must choose a road for each prop to export. In most cases, RoadRunner
selects the road closest to the prop.

Note In some cases, it is impossible to represent a prop position in ASAM OpenDRIVE. In this image,
the bush on the right is past the end of the road and there is no other road in the scene. In this case,
the prop is not exported and a warning is displayed during export.

In some cases, it is unclear where to best place an imported <object> or which dimensions of a prop
should be exported (for example, a tree trunk's width or height may be desirable over the full size of
the tree including the leaves). Similarly, in some cases, it is unclear where to place an imported
guardrail, wall, fence <outline> or <repeat> (for example, does the <repeat> define the top or
the bottom of the fence). To better define the import and export position, a <ReferencePosition>
entry can be added to the OpenDriveAssetData.xml file per asset. For more details about the
OpenDriveAssetData.xml file, see “Convert Asset Data Between RoadRunner and ASAM
OpenDRIVE” on page 5-16.

The <ReferencePosition> entry has two possible values:

• FitToBoundingBox
• UseOrigin

The FitToBoundingBox is selected by default. This figure shows the <ReferencePosition> tag
set to FitToBoundingBox during export for props. When <ReferencePosition> is set to
FitToBoundingBox for props during export, the <object> is created with the position of the
<object> at the bottom center of the resulting bounding box.

 Export to ASAM OpenDRIVE

5-29

During import, when the <ReferencePosition> is set to FitToBoundingBox, the prop is placed
centered in the bounding box. When the <ReferencePosition> is set to FitToBoundingBox for
extrusions during export, the <object> is created with <outline> that follows the bottom center of
the extrusion shape. During import, the prop curve is created such that the bottom center of the
extrusion shape follows the <object><outline> or <repeat>. This figure shows a guardrail
extrusion imported with the FitToBoundingBox option set for <ReferencePosition>.

5 Export Scenes

5-30

When the <ReferencePosition> is set to UseOrigin for props during export, the <object> is
created with the position of the <object> positioned at the bottom of the prop. The width and length
values are not exported. Only the height value is exported. The radius value is optionally exported if
specified in the OpenDriveAssetData.xml file for that prop. This image shows a prop exported
using the UseOrigin value.

 Export to ASAM OpenDRIVE

5-31

When the <ReferencePosition> is set to UseOrigin for extrusions during export, <object> is
created with <outline> following the prop curve path. During import, the prop curve is created
following the <object> <outline> or <repeat>. This image shows a guardrail extrusion imported
using the UseOrigin value.

5 Export Scenes

5-32

Prop Attributes

Exported props include the following attributes:

ASAM OpenDRIVE Attribute Description
name Name of the prop asset (for example,

"Signal_Post_30ft")
s/t Inertial position of the prop point
hdg/roll/pitch Inertial rotations of the prop point
zOffset Relative height of the prop point
height/width/length Dimensions of the prop model's bounding box
type Object type, as defined by the configuration XML

file for the point's asset (refer to “Convert Asset
Data Between RoadRunner and ASAM
OpenDRIVE” on page 5-16)

 Export to ASAM OpenDRIVE

5-33

Crosswalks and Marking Polygons

Crosswalks and marking polygons are exported as ASAM OpenDRIVE <outline> objects, similar to
the crosswalk example in section 7.4 of the OpenDRIVE 1.5M specification.

Unlike that example, RoadRunner exports the polygon vertices as <cornerLocal> objects (rather
than <cornerRoad> objects), which means that the vertices are defined relative to the pivot point
specified in the attributes of the <object> parent.

This example code shows the representation of the crosswalk polygon in the previous image.

<object id="162" name="ContinentalCrosswalk" s="5.9095723267801631e+1" t="1.7834630409170869e+0" zOffset="1.9073486328125000e-6" hdg="1.3359605073928833e+0" roll="0.0000000000000000e+0" pitch="0.0000000000000000e+0" orientation="-" type="crosswalk" width="2.9256307177817877e+0" length="1.6163854233175169e+1">
 <outline>
 <cornerLocal u="-8.0157129245630365e+0" v="1.4628157932607735e+0" z="0.0000000000000000e+0"/>
 <cornerLocal u="8.0819274304890261e+0" v="1.0363072624453764e+0" z="-1.9073486328125000e-6"/>
 <cornerLocal u="8.0157129245556504e+0" v="-1.4628157932298933e+0" z="-1.9073486328125000e-6"/>
 <cornerLocal u="-8.0819274304964104e+0" v="-1.0363072624144962e+0" z="0.0000000000000000e+0"/>
 <cornerLocal u="-8.0157129245630365e+0" v="1.4628157932607735e+0" z="0.0000000000000000e+0"/>
 </outline>
</object>

Crosswalks and Marking Polygon Attributes

Exported crosswalks and marking polygons include the following attributes.

ASAM OpenDRIVE Attribute Description
name Name of the marking (for example,

"ContinentalCrosswalk")
s/t Inertial position of the pivot point
hdg/roll/pitch Inertial rotations of the pivot point
zOffset Relative height of the pivot point
height/width/length Dimensions of an oriented bounding box fit to the

polygon's vertices. The 'width' is treated as the
dimension along the road, and the 'length' is
treated as the dimension across the road.

type Object type, as defined by the configuration XML
file for the marking's asset (refer to “Convert
Asset Data Between RoadRunner and ASAM
OpenDRIVE” on page 5-16)

5 Export Scenes

5-34

Traffic Signals and Signs

RoadRunner exports traffic signals and signs as ASAM OpenDRIVE <signal> objects.

For optimal behavior, traffic signals and signs for controlled intersections should be mapped to
junction gates by using the Signal Tool. Traffic signals are exported only if they are mapped to
junction gates. Signs are exported regardless if they are mapped to junction gates and are
automatically mapped to the nearest road if not explicitly mapped.

If you need to add a traffic signal outside of a controlled intersection (for example, for a freeway
onramp or pedestrian crossing), you can use the Custom Junction Tool to create a junction along a
single road.

Note Traffic signals and signs within Prop Assembly Assets are not exported. To export signals or
signs in an assembly, you must first expand the instance of the assembly.

Signals and Signal References

When a signal or sign is mapped to a junction gate, it appears in the ASAM OpenDRIVE export as a
<signal> instance and one or more <signalReference> instances, where:

• <signal> defines the physical location of the signal. Use <signal> to derive the 3D location of
the signal, regardless of which roads or lanes are controlled by the signal. In most cases, the
signal is mapped to the closest road (similar to the approach used for “Props” on page 5-28). This
mapping might have no logical association to the signal (for example, the signal could be a nearby
side street).

• <signalReference> associates the signal to the roads and lanes that are controlled by the
signal. Signal references indicate the semantic relationship between the signal and the road
network (as opposed to <signal>, which is used purely for geometric positioning). Signal
references are present for each maneuver road gate associated with the signal (through the
Signal Tool).

Signal Attributes

Exported signals and signs include the following attributes:

 Export to ASAM OpenDRIVE

5-35

ASAM OpenDRIVE Attribute Description
name

s/t

hOffset/roll/pitch

zOffset

height/width/length

Refer to Prop Attributes on page 5-33.

By default, "hOffset" is treated the same as the
<object> "hdg" attribute. However, if you
select Export hOffset relative to orientation
when exporting, then "hOffset" is offset from
the <orientation> (direction of travel) of the
road that the signal applies to.

type/subtype Signal type and subtype, as defined by the
configuration XML file for the signal's asset (refer
to “Convert Asset Data Between RoadRunner and
ASAM OpenDRIVE” on page 5-16)

country "OpenDRIVE" is always used.
dynamic Specify "yes" for dynamic junction signalization

and "no" for static signalization (for example,
"All Go" or "All Stop")

value Unused (set to "-1" in all cases).
text Unused (set to empty string in all cases).

Parking Spaces

RoadRunner exports parking spaces as an <object> with type "parking" and an additional
<parkingSpace> entry under the <object> following section 5.3.8.1.5 in the OpenDRIVE 1.4H
specification. Markings on a parking space are exported as <marking> under the <parkingSpace>
entry following section 5.3.8.1.6 in the OpenDRIVE 1.4H specification.

5 Export Scenes

5-36

Parking Attributes

Exported parking spaces include the following attributes.

ASAM OpenDRIVE Attribute Description
name

s/t

hdg/roll/pitch

zOffset

height/width/length

Refer to Prop Attributes on page 5-33.

type Always set to "parking".
side (attribute for <marking> entries under
<parkingSpace>)

Side of the marking ("left", "right",
"front", or "rear"), where the rear is the entry
point of the parking space.

type/width/color (attributes for <marking>
entries under <parkingSpace>)

Same properties as <roadMark> entries for
<lane>.

Limitations
General

• RoadRunner does not export lane height to ASAM OpenDRIVE.
• To export prop polygons from RoadRunner to ASAM OpenDRIVE, you must run the 'bake'

operation to convert them to points. For more details, see Prop Polygon Tool.
• Prop curves and props spans export to ASAM OpenDRIVE as road objects. In ASAM OpenDRIVE,

the exported road objects are described by <objects> element. An <outline> element within
the <object> element describes the shape of an exported object.

• RoadRunner does not export <repeat> entries to describe repeated objects. Instead, it exports an
<object> element for every individual object, or an <outline> element for extrusions.

• If a lane has multiple lane predecessors and successors, RoadRunner exports only one
predecessor and successor to ASAM OpenDRIVE.

Specific to OpenDRIVE 1.5 / ASAM OpenDRIVE 1.6

• If there is a lateral offset between the reference lines of two serially connected roads in a
RoadRunner scene, RoadRunner does not automatically correct the lateral offset when exporting
the scene to the ASAM OpenDRIVE 1.6 format.

• RoadRunner does not export a <positionRoad> element for a signal. Instead, it uses inertial
coordinates and exports the <positionInertial> element to reference the deviation between
the physical position and logical position of a signal.

See Also
OpenDRIVE Viewer Tool | OpenDRIVE Export Preview Tool

 Export to ASAM OpenDRIVE

5-37

More About
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Add Metadata to RoadRunner Scene Elements” on page 5-42

External Websites
• ASAM OpenDRIVE

5 Export Scenes

5-38

https://www.asam.net/standards/detail/opendrive/

Left-Hand Drive Export to ASAM OpenDRIVE

Recommended Approach
If the scene being built in RoadRunner is meant to have left-hand driving, the Driving Side should
be set to Left. Otherwise, it should be set to Right.

To set the Driving Side export option, open the Export ASAM OpenDRIVE dialog box by
selecting File > Export > ASAM OpenDRIVE (.xodr). For more details about export options, see
“Export to ASAM OpenDRIVE” on page 5-24.

ASAM OpenDRIVE Details
The supported ASAM OpenDRIVE formats OpenDRIVE 1.4, OpenDRIVE 1.5, and ASAM OpenDRIVE
1.6 does not have a notion of lane travel direction. Instead, it is expected that all drivable lanes on
one side of the road go one way and the drivable lanes on the other side of the road go the opposite
way.

The supported ASAM OpenDRIVE formats does not have a notion of "driving side" (for example, left-
hand driving in the UK or Japan). Instead, it is expected that the travel direction be one of these
options:

• Assumed right-side (common)
• Assumed based on <header> country code (uncommon)
• Determined using the <incoming> lanes in <junction> entries (uncommon, difficult, and

sometimes impossible if no junctions are present)
• Determined by the initial orientation of placed vehicles in a scenario (most common)

RoadRunner Export
RoadRunner does the following on export for travel direction:

1 Ensures that lanes are placed on one side or the other of the ASAM OpenDRIVE road based on
travel direction

2 Writes out the travel direction of the lane in <userData> for each lane.

During export, lanes traveling in one direction are placed on one side of the ASAM OpenDRIVE road
(regardless of the lane’s original side of the road in RoadRunner), and the lanes traveling in the
opposite direction are placed on the other side of the ASAM OpenDRIVE road. The Driving Side =
Left option provides a hint to the exporter that lanes marked as Forward travel direction should (in
general) be placed on the Left side of the ASAM OpenDRIVE road.

 Left-Hand Drive Export to ASAM OpenDRIVE

5-39

Examples
Right-Hand Driving with "Driving Side = Right"

RoadRunner Scene Exported ASAM OpenDRIVE Scene

The forming lanes are created on either side of
the center lane. Travel direction is irrespective of
the side of the road.

The lanes are placed on each side (colored red
and green for left and right, respectively) to
adhere to the ASAM OpenDRIVE travel direction
restrictions.

Left-Hand Driving with "Driving Side = Left"

RoadRunner Scene Exported ASAM OpenDRIVE Scene

The forming lanes are created on either side of
the center lane. Travel direction is irrespective of
the side of the road.

The resulting ASAM OpenDRIVE road is the same
as the previous ASAM OpenDRIVE road (this is
expected). However, these roads will not be
identical in regards to junctions because the
<incoming> lanes will be different for the right
vs. left cases.

5 Export Scenes

5-40

Left-Hand Driving with "Driving Side = Right" and Right-Hand Driving with "Driving Side =
Left" are Not Recommended

RoadRunner Scene Exported ASAM OpenDRIVE Scene

The forming lanes are created on either side of
the center lane. Travel direction is irrespective of
the side of the road.

All lanes are on the same side of the road. During
export, warnings like the following are printed in
the Output pane:

WARNING: Detected non-critical
validation issues.

Road 1 has more than two driving
directions or reversed driving
directions. Some OpenDRIVE importers
may not interpret this data correctly.

 Left-Hand Drive Export to ASAM OpenDRIVE

5-41

Add Metadata to RoadRunner Scene Elements
RoadRunner enables you to add metadata to describe the elements in a scene. The metadata sets the
values for one or more ASAM OpenDRIVE attributes when you export the scene to the ASAM
OpenDRIVE file format. For information about how to export a RoadRunner scene to the ASAM
OpenDRIVE file format, see “Export to ASAM OpenDRIVE” on page 5-24.

Add Metadata
Use the Metadata pane to add metadata for a road, lane, junction, signal, or object element in a
RoadRunner scene.

To add metadata for an element in the RoadRunner scene, you must first select a tool and then select
an element in the scene. For example, to add metadata for a road element, you must first select the
Road Plan Tool from the RoadRunner toolbar and select a road from the scene. This enables the Add
Metadata dialog box. Specify the name and the data type for the metadata by using the Name and
Type parameters, respectively.

5 Export Scenes

5-42

Select the data type of the metadata value from these options: Boolean, Integer, Double, and
String. You can then enter the value for the new metadata by using the Value parameter in the
Metadata pane.

Set Attributes
You can add metadata to define both custom attributes and attributes described in ASAM OpenDRIVE
standard. The Name and Value parameters set the attribute name and the value to be exported to
the ASAM OpenDRIVE file, respectively. For an example of how to set attributes by defining the
metadata, see Set OpenDRIVE Attributes Using Metadata on page 5-45.

Set Custom Attributes

Custom attributes are attributes that are not described in the ASAM OpenDRIVE standard. The
custom attributes defined for an element in the scene are exported to the ASAM OpenDRIVE file as
ancillary data and are represented by <userData> element.

Set Attributes Described in ASAM OpenDRIVE Standard

You can use the metadata to set the values for the name, type, subtype, country, value, unit,
and text attributes of <road>, <junction>, <object>, and <signal> elements. To set these
attributes, you must add OpenDRIVE_ as a prefix to the attribute names when specifying them to the
Name parameter.

Name Specified to Name Parameter Corresponding ASAM OpenDRIVE Attribute
OpenDRIVE_name Sets the name attribute for the selected element.
OpenDRIVE_type Sets the type attribute for the selected element.
OpenDRIVE_subtype Sets the subtype attribute for the selected

element.
OpenDRIVE_country Sets the country attribute for the selected

element.

 Add Metadata to RoadRunner Scene Elements

5-43

OpenDRIVE_value Sets the value attribute for the selected
element.

OpenDRIVE_unit Sets the unit attribute for the selected element.
OpenDRIVE_text Sets the text attribute for the selected element.

Note

• Metadata specified for elements other than <road>, <junction>, <object>, and <signal> is
exported to the ASAM OpenDRIVE file as custom attributes. These attributes are represented by
the <userData> element.

• Metadata for ASAM OpenDRIVE attributes other than name, type, and subtype is exported to
the ASAM OpenDRIVE file as custom attributes and is represented by the <userData> element.

• To export the metadata for prop polygons, you must first convert them to points by using the bake
operation. Then, add metadata and export to ASAM OpenDRIVE.

See Also
OpenDRIVE Viewer Tool | OpenDRIVE Export Preview Tool

Related Examples
• Set OpenDRIVE Attributes Using Metadata on page 5-45

More About
• “Importing ASAM OpenDRIVE Files” on page 3-2

External Websites
• ASAM OpenDRIVE

5 Export Scenes

5-44

https://www.asam.net/standards/detail/opendrive/

Set ASAM OpenDRIVE Attributes Using Metadata
This example shows how to add metadata to elements in a RoadRunner scene and then export the
scene to the ASAM OpenDRIVE file format. The metadata sets the values for ASAM OpenDRIVE
attributes in the exported file. For more information about metadata values for scene elements, see
“Add Metadata to RoadRunner Scene Elements” on page 5-42.

Load RoadRunner Scene
From the menu, select File > Open Scene to load an existing RoadRunner scene (.rrscene) into
the scene editor.

Alternatively, you can also create a RoadRunner scene or import an ASAM OpenDRIVE file and
convert the data into a RoadRunner scene.

Add Metadata for Road
1 On the RoadRunner toolbar, click the Road Plan Tool button. Select a road in the scene to which

you want to add metadata.
2 Click Add Metadata in the Metadata panel and specify the Name parameter as

OpenDRIVE_name. Set the Type parameter to String. Click OK and specify the Value
parameter as Highway.

Add Metadata for Junction
1 On the RoadRunner toolbar, click the Custom Junction Tool button. Select a junction in the

scene to which you want to add metadata.

 Set ASAM OpenDRIVE Attributes Using Metadata

5-45

2 Click Add Metadata in the Metadata panel and specify the Name parameter as
JunctionType. Set the Type parameter to String. Click OK and specify the Value parameter
as Automatic.

Export to ASAM OpenDRIVE
From the menu, select File > Export > ASAM OpenDRIVE (.xodr). Export the scene to the
OpenDRIVE 1.5 format.

Inspect ASAM OpenDRIVE Attributes
Inspect the attributes in the exported .xodr file.

You can verify that the OpenDRIVE_name metadata with the value Highway added to a road has set
the name attribute for the road in the exported file to "Highway". The attribute value is defined
within the <road> element.

<road name="Highway" length="1.9080212697060187e+1" id="4" junction="-1">
 <link>
 <successor elementType="junction" elementId="28"/>
 </link>

You can also verify that the JunctionType metadata with the value Automatic has been exported
as user data. The attribute JunctionType is defined within a <userData> element.

<junction id="28" name="junction28">
 <connection id="0" incomingRoad="5" connectingRoad="29" contactPoint="start">
 <laneLink from="-1" to="-1"/>
 </connection>
 <connection id="1" incomingRoad="3" connectingRoad="30" contactPoint="start">

5 Export Scenes

5-46

 <laneLink from="-2" to="-1"/>
 <laneLink from="-4" to="-3"/>
 <laneLink from="-5" to="-4"/>
 <laneLink from="-6" to="-5"/>
 </connection>
 <connection id="2" incomingRoad="4" connectingRoad="30" contactPoint="end">
 <laneLink from="-2" to="-1"/>
 <laneLink from="2" to="-4"/>
 <laneLink from="3" to="-5"/>
 </connection>
 <connection id="3" incomingRoad="4" connectingRoad="33" contactPoint="start">
 <laneLink from="-1" to="-1"/>
 <laneLink from="-2" to="-2"/>
 <laneLink from="-3" to="-3"/>
 </connection>
 <userData code="JunctionType" value="Automatic"/>
 <userData>
 <vectorJunction junctionId="{275e57c8-914f-466d-9c62-37ae8f570897}"/>
 </userData>
 </junction>

See Also
Custom Junction Tool | Road Plan Tool

More About
• “Create Simple RoadRunner Scene” on page 1-19
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Export to ASAM OpenDRIVE” on page 5-24
• “Add Metadata to RoadRunner Scene Elements” on page 5-42

External Websites
• ASAM OpenDRIVE

 Set ASAM OpenDRIVE Attributes Using Metadata

5-47

https://www.asam.net/standards/detail/opendrive/

Export to ASAM OpenCRG
ASAM OpenCRG is an open standard that enables you to specify road surface data using the curved
regular grid (CRG) format. Using RoadRunner, you can export road surface data when you export a
scene to an ASAM OpenDRIVE file. RoadRunner exports the surface data of different road segments
to different ASAM OpenCRG files, and links these files to an ASAM OpenDRIVE file.

The export file format conforms to the ASAM OpenCRG V1.2.0.

Export to ASAM OpenCRG
Follow these steps to export CRG data from a RoadRunner scene to an ASAM OpenCRG file.

1 From the menu, select File > Export > ASAM OpenDRIVE (.xodr).
2 In the Export ASAM OpenDRIVE dialog box, select Export OpenCRG and Synthetic OpenCRG

Options.
3 Select the desired Road Data Format from these options:

• LRFI (default) — Long, real, formatted, interchangeable data format
• LDFI — Long, double, formatted, interchangeable data format

4 Select your other desired options in the dialog box and click Export. For more details, see
“Export to ASAM OpenDRIVE” on page 5-24.

RoadRunner saves all the ASAM OpenCRG files linked to a 3D scene to the folder specified in File
path for the ASAM OpenDRIVE file.

See Also
Road CRG Tool

More About
• Synthetic OpenCRG Assets
• “Importing ASAM OpenCRG Files” on page 3-10
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Export to ASAM OpenDRIVE” on page 5-24

External Websites
• ASAM OpenCRG

5 Export Scenes

5-48

https://www.asam.net/standards/detail/opencrg/

Segmentation

Segmentation Overview
RoadRunner has the ability to export scene geometry by category for easy generation of
segmentation training data.

Segmentation categories are identified in the export scene by using suffixes applied to each material
name. For example, a material named Concrete that is applied to a curb is named Concrete_Curb
on export. The exported material inherits the built-in segmentation category suffix Curb, which
uniquely distinguishes it from the material Concrete_Sidewalk applied to neighboring sidewalk
geometry.

Toggle Segmentation Display
1 To enter segmentation display, select View > Sensor > Segmented.
2 To exit segmentation display, select View > Sensor > Camera.

Categories
RoadRunner uses a default set of segmentation categories when building geometry within a scene.
These categories include: Road, Sidewalk, Curb, Gutter, Marking, Ground, Building, Vehicle,
Bike, Pedestrian, Sign, Signal, Foliage, Prop, and FireHydrantProp. The default
segmentation type is Sign for all the sign assets. However, a few of the sign assets have highly
segmented categories which include: StopSign, YieldSign, SpeedLimitSign,
WeightLimitSign, RightArrowWarningSign, LeftArrowWarningSign,
LeftAndRightArrowWarningSign, LeftChevronWarningSign, RightChevronWarningSign,
LeftOneWaySign, RightOneWaySign, WheelChairWarningSign, SchoolBusOnlySign,
RightTurnOnlyArrowSign, LeftTurnOnlyArrowSign, StraightOnlyArrowSign,
RightTurnOnlySign, LeftTurnOnlySign, StraightOnlySign, NoLeftTurnSign,
NoRightTurnSign, NoThruTrafficSign, NoUturnSymbolSign, NoRightTurnSymbolSign,
NoLeftTurnSymbolSign, NoRightTurnOnRedSign, CrossWalkSign, CurveRightWarningSign,
CurveLeftWarningSign, UpRightArrowWarningSign, UpLeftArrowWarningSign,
DownRightArrowWarningSign, DownLeftArrowWarningSign, RailRoadCrossingSign,
StreetSign, RoundaboutWarningSign, ExitSign, BikeLaneSign, and CrossWalkSignal.

Additionally, you can extend the categories and assign them to the following project asset types to
create custom categories: Props, Signals, Lane Markings, Polygon Markings, and Stencils.

Add a Custom Category

1 In a text editor, open the SegmentationCategories.xml file located in the Project folder of
the project. If the file does not exist, create one.

2 Add a new Category entry. Include a name and color attribute, which are used during export
and segmentation display, respectively.

3 Existing categories can also be modified or removed. Changing the name of an existing category
is equivalent to removing the old category and adding a new one. Existing assets referencing this
old name will default.

4 Save the file and restart RoadRunner. New categories are available only after the project is
reloaded.

 Segmentation

5-49

This code shows an example SegmentationCategories.xml file.

<?xml version="1.0"?>
<CustomSegmentationCategories>
 <Category name="Bush" color="#7BA269"/>
 <Category name="Tree" color="#0F5F32"/>
 <Category name="Crosswalk" color="#963"/>
 <Category name="DashedMarking" color="#369"/>
 <Category name="SolidMarking" color="#48a"/>
 <Category name="DoubleMarking" color="#69b"/>
</CustomSegmentationCategories>

Export Scene Geometry Grouped for Segmentation

On export, RoadRunner supports grouping materials by segmentation category or separating them
into individual meshes. To toggle between these options, follow these steps.

1 Select File > Export and select a triangulated format, such as Filmbox or OpenFlight.
2 In the export dialog box, fill out the file location and any tiling options.
3 Optionally use the Split by Segmentation toggle in the Options group to control whether each

mesh is split by category or remains grouped.
4 Click Export.

Assign a Category to an Asset

1 Select the asset in the Library Browser.
2 In the Attributes pane, under Segmentation, select the appropriate category.
3 Select File > Save Project in the menu bar.

5 Export Scenes

5-50

Downloading Plugins
RoadRunner provides plugins for exporting scenes to Unity, Unreal, and CARLA.

The latest plugins can be downloaded here.

The plugins are delivered as a zip file containing subfolders for each plugin type. Refer to the
following sections for details on installing and using a specific plugin.

Unity
See “Export to Unity” on page 5-59 for instructions on installing and using the plugin.

Unreal and CARLA
The basic RoadRunner importer and the CARLA integration plugin are included in the same plugin
folder. If you are using Unreal and not CARLA, copy only the RoadRunnerImporter,
RoadRunnerRuntime, RoadRunnerMaterials folders. If you are using CARLA, copy the
RoadRunnerImporter, RoadRunnerRuntime, RoadRunnerMaterials, and
RoadRunnerCarlaIntegration folders.

See “Export to Unreal Using Filmbox (.fbx) File” on page 5-85 or “Export to CARLA” on page 5-94
for instructions on installing and using the plugin.

 Downloading Plugins

5-51

https://www.mathworks.com/supportfiles/roadRunnerPlugins/RoadRunner_Plugins.zip

RoadRunner Metadata Export
RoadRunner includes an extra metadata file for certain export options.

Metadata Overview
When exporting to Unity on page 5-59, Unreal on page 5-85, or CARLA on page 5-94, an
additional ".rrdata.xml" file is generated during export. This file is used in combination with the
RoadRunner import plugins to help cover the information not available in the FBX file. The metadata
file holds information about the materials included in the scene and holds traffic signal information.
For examples on how to parse this information, refer to the Unity or Unreal plugins included with the
RoadRunner installation under the "Tools" folder.

File Details
The metadata file continues to update as needed. The metadata version is stored under the top-level
element (for example, <RoadRunnerMetadata Version="3">).

The data is organized into three main sections: SignalConfigurations, Signalization, and MaterialList.

SignalConfigurations

This section holds information about how the signal bulbs change for each configuration of a traffic
light (for example, which bulbs are on and off during a green light or red light).

Example:
<Signal>
 <ID>{9b15662e-0dae-40d5-ab82-55e0077bcbc2}</ID> // GUID of signal asset
 <Type>Straight Right</Type> // Supported turn types
 <Configuration> // Configuration entry
 <Name>Red</Name> // State name
 <LightState> // Light bulb mesh state
 <Name>light_red_on</Name> // Mesh node name in signal's FBX
 <State>true</State> // "true" if mesh should be visible
 </LightState>
 <LightState>
 <Name>light_red_off</Name> // Corresponding mesh node when light is off
 <State>false</State>
 </LightState>
 ...
 </Configuration>
 ...
</Signal>

Signalization

This section holds information about each traffic junction in the scene and how each signal changes
over time.

Example:
<Junction>
 <ID>{5c348c08-d2d7-423e-b560-04eb52ddcd10}</ID> // GUID of junction
 <SignalPhase> // Each signal phase holds a list of intervals
 <Interval> // Each interval represents state of junction (e.g., "northbound road currently has yellow light")
 <Time>20</Time> // Duration of the interval
 <Signal>
 <ID>{d33d9030-c427-44ff-860b-486f3caf45b2}</ID> // GUID of signal prop. Can be referenced to node in exported FBX
 <SignalAsset>{9b15662e-0dae-40d5-ab82-55e0077bcbc2}</SignalAsset> // GUID of signal asset. Can be referenced to SignalConfigurations

5 Export Scenes

5-52

 <ConfigurationIndex>2</ConfigurationIndex> // Index into the list of configurations held in the signal asset
 </Signal>
 <Signal>
 <ID>{00dd1cc3-9b68-44dd-bb20-a3e49452606f}</ID> // All signals attached to the junction are listed
 <SignalAsset>{9b15662e-0dae-40d5-ab82-55e0077bcbc2}</SignalAsset>
 <ConfigurationIndex>0</ConfigurationIndex>
 </Signal>
 ...
 </Interval>
 ...
 </SignalPhase>
 ...
</Junction>

MaterialList

This section contains a list of all the materials used in the scene, along with all the parameters so that
they can be reconstructed in the target software.

Example:
<Material>
 <Name>Asphalt1</Name> // Name of the material, matches the one stored in the FBX
 <DiffuseMap>Asphalt1_Diff.png</DiffuseMap>
 <NormalMap>Asphalt1_Norm.png</NormalMap>
 <SpecularMap>Asphalt1_Spec.png</SpecularMap>
 <AmbientColor>1.000000,1.000000,1.000000</AmbientColor> // Ambient color matches diffuse
 <DiffuseColor>1.000000,1.000000,1.000000</DiffuseColor>
 <SpecularColor>0.058824,0.058824,0.058824</SpecularColor>
 <Roughness>0.150000</Roughness>
 <SpecularFactor>1.000000</SpecularFactor>
 <TransparencyFactor>0.000000</TransparencyFactor> // Inverse of diffuse color alpha
 <Emission>0.000000</Emission>
 <TextureScaleU>0.35</TextureScaleU>
 <TextureScaleV>0.35</TextureScaleV>
 <TwoSided>false</TwoSided>
 <DrawQueue>0</DrawQueue> // Render order for overlapping transparent markings
 <ShadowCaster>true</ShadowCaster>
 <IsDecal>false</IsDecal> // Set to "true" for transparent markings
 <SegmentationType>Road</SegmentationType>
</Material>

 RoadRunner Metadata Export

5-53

Export to Apollo

Apollo Overview
RoadRunner can export road scenes to Baidu Apollo formats. You can export to Apollo 3.0 and 5.0
XML formats and Apollo 5.0 binary format.

Before you export to any Apollo format, ensure that your scene’s world origin is set in the World
Settings Tool. Once you are ready to export, navigate to File > Export > Apollo (.bin, .xml) to
open the export options window. Make sure you choose the appropriate Apollo version before
completing your export, and ensure that you specify the file extension (.xml or .bin) you intend to
export to. Exports to the binary format will include a human readable .txt representation of the
protobuf data serialized in the .bin counterpart.

About the Different Apollo Maps
The Apollo Dreamview front-end tool can visualize and simulate routing on RoadRunner Apollo
exports. A complete map is composed of the following files for proper simulation:

• base_map.bin — A protobuf representation of HD Map information. The representation might be
accompanied with a human-readable .txt version.

• sim_map.bin — A downscaled version of base_map.bin used for faster visualization at runtime.
The file might be accompanied with a .txt version.

• routing_map.bin — Topological map information used for generating routes.
• default_end_way_point.txt — A start point for routing.

Given either a binary or XML export from RoadRunner, these files can be generated using various
tools provided by the Apollo codebase.

Generating Necessary Map Files

Note If you have not yet set up your Apollo Docker® environment, follow the Apollo 3.0 guide or
Apollo 5.0 guide to do so.

Binary maps can be generated from XML by using the following command in the Apollo Docker
environment:

bazel-bin/modules/maps/tools/proto_map_generator --map_dir=INPUT_DIR
--output_dir=OUTPUT_DIR

INPUT_DIR is the name of the directory containing the XML file, and OUTPUT_DIR is the desired
output directory. Within the input directory, ensure the XML file is named base_map.xml before
running it. This will generate a binary file named base_map.bin and a text file version named
base_map.txt in the output directory specified.

With this .bin file or a .bin file exported directly from RoadRunner, a sim_map can be generated
with the following command:

bazel-bin/modules/maps/tools/sim_map_generator --map_dir=INPUT_DIR
--output_dir=OUTPUT_DIR

5 Export Scenes

5-54

https://github.com/ApolloAuto/apollo/blob/r3.0.0/docs/howto/how_to_build_and_release.md
https://github.com/ApolloAuto/apollo/blob/r5.0.0/docs/howto/how_to_build_and_release.md

Again, ensure that the .bin file is named base_map.bin before running it.

A routing map can be generated with the following command:

scripts/generate_routing_topo_graph.sh --map_dir=INPUT_DIR

More information about the different Apollo map types can be found here.

Visualizing Maps in Apollo Dreamview
Once you have all of the components for an Apollo map, you can visualize and simulate it in the
Dreamview front-end.

Create a folder for your map in apollo/modules/maps/data, and add all the map files to that
folder. Rename the folder to what you would like to appear in the Dreamview map selection drop-
down. Restart Dreamview to refresh the maps in your data folder.

Once Dreamview starts, select your newly added map and a test vehicle in the top-right corner.
Ensure that the standard mode is selected.

Go to the Tasks tab on the left, and enable Sim Control to render the map.

Routing Simulations in Apollo Dreamview
To run a road simulation in Dreamview, ensure that Routing is enabled in the Modules window. In
the routing window, define a route on the map by using at least two waypoints. Click Send Route
Request to run the simulation.

Visualizing Maps in SVL Simulator
The SVL Simulator has the ability to import Apollo 5.0 binary files for editing and visualization.

Note If you have not yet set up the SVL Simulator with Unity, see the SVL Simulator documentation.

To import an Apollo map into the SVL Simulator, open the HD Map Import window under Simulator
> Import HD Map. Under Import Format, select Apollo 5 HD Map, and optionally modify the
Distance and Delta Threshold values. Click "..." to open the file browser and select the binary file
export. Click import to add the map to the scene.

More information about importing maps into the SVL Simulator can be found in the SVL Simulator
documentation.

Apollo User Asset Configuration
The Apollo exporter uses a configuration XML file to map RoadRunner props, signals, signs, and
markings to the appropriate <object> or <signal> "id" and "subtype". This process works the
same way as the ASAM OpenDRIVE asset configuration.

 Export to Apollo

5-55

https://github.com/ApolloAuto/apollo/blob/master/modules/map/data/README.md
https://www.svlsimulator.com/docs/
https://www.svlsimulator.com/docs/
https://www.svlsimulator.com/docs/

Exporting a Custom Prop or Signal

1 Copy the ApolloAssetData.xml file located in the RoadRunner install location under
AssetsInstall/ResourceAssets to the Project folder in your project (next to the
Project.rrproj file).

2 Open the new ApolloAssetData.xml file in a text editor.
3 Add entries for new objects, markings, or signals.
4 Save your file and export an Apollo file.

You do not need to restart RoadRunner after creating or modifying the ApolloAssetData.xml file.

The format of an ApolloAssetData.xml file is the same as the format of an
OpenDRIVEAssetData.xml file. For a detailed definition of this format, see “Export to ASAM
OpenDRIVE” on page 5-24. The template file in the AssetsInstall/ResourceAssets folder also
contains examples for a traffic light, stop sign, and yield sign.

Exporting a Traffic Signal with Multiple Variances

Here is the definition of the format to properly set a traffic signal’s asset data for different variances
and subsignals.

<Signals>
 <Signal>
 <Type>trafficLight</Type>
 <SubType>mix3Vertical</SubType>
 <SubSignals>
 <Variant>1</Variant>
 <SubSignal>
 <LightName>light_red</LightName>
 <Type>circle</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_yellow</LightName>
 <Type>circle</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_green</LightName>
 <Type>circle</Type>
 </SubSignal>
 </SubSignals>
 <SubSignals>
 <Variant>2</Variant>
 <SubSignal>
 <LightName>light_red</LightName>
 <Type>arrowLeft</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_yellow</LightName>
 <Type>arrowLeft</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_green</LightName>
 <Type>arrowLeft</Type>
 </SubSignal>
 </SubSignals>
 <SubSignals>

5 Export Scenes

5-56

 <Variant>3</Variant>
 <SubSignal>
 <LightName>light_red</LightName>
 <Type>arrowRight</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_yellow</LightName>
 <Type>arrowRight</Type>
 </SubSignal>
 <SubSignal>
 <LightName>light_green</LightName>
 <Type>arrowRight</Type>
 </SubSignal>
 </SubSignals>
 <FilePath>Props/Signals/Signal_3Light_Post01.fbx</FilePath>
 </Signal>
</Signals>

Unsupported Features
The following data records are currently unsupported for export.

• Route View Record (<routeView> … </routeView> and its children)
• Lane Overlap Group (<laneOverlapGroup> … </laneOverlapGroup> and its children)

See Also

 Export to Apollo

5-57

Export to Metamoto
RoadRunner can export road scenes for use in Metamoto simulations. To export to Metamoto, follow
these steps:

1 Select File > Export > Metamoto.
2 Specify a file name. All other export options are set for exporting to Metamoto.

When you export, the software generates a zip file containing the files needed to use your scene
in Metamoto. These zipped files have the same name you specified when exporting. For example,
MyScene.zip would contain:

• MyScene.fbx (and any other necessary texture files)
• MyScene.xodr
• MyScene.geojson
• MyScene.rrdata.xml

For any limitations, refer to the documentation about exporting to FBX on page 5-3, OpenDRIVE® on
page 5-24, and GeoJSON on page 5-9.

See Also

External Websites
• https://www.foretellix.com/

5 Export Scenes

5-58

https://www.foretellix.com/

Export to Unity

Unity Overview
RoadRunner can export scenes to Unity format. The Unity export option exports a Filmbox (.fbx) file
containing the 3D objects in a scene along with an additional XML file to hold extra data for materials
and traffic signals in the scene.

On the Unity side, a set of scripts are included in the RoadRunnerUnityTool asset package to help
import the FBX file using the information stored in the XML file. The script handles the following
details:

• Setting up materials

• Material data is read in from the XML file and mapped into the included custom shaders.
• Adding colliders to roads and terrain

• Colliders are added to all imported meshes.
• Setting up the components of traffic signals

• Signal data is read in from the XML file to create a new game object in the prefab, with the
light bulb references to game objects set up during import.

• The traffic signals will cycle through their phases during play mode.
• The UUIDs prefixed in the game object for prop instances are needed only at import time to set

up references to game objects in the traffic signal script so that they can be renamed freely.
• Unity software requirements: Unity Version 2017.3+

Installing the Import Tool
Follow the instructions in this section to install the Import Tool into your Unity project.

1 See the page “Downloading Plugins” on page 5-51 for instructions for downloading the latest
version of the plugin.

2 Extract the RoadRunner Plugins zip file and locate the "RoadRunnerUnityTool.unitypackage" file
in the "Unity" folder.

Note For Unity versions 2017.1 through 2017.3, use
RoadRunnerUnityTool_2017.unitypackage file in the Unity folder.

3 Open your project in Unity.
4 Open the RoadRunnerUnityTool asset package file to import it. Alternatively, drag the package

file into the Unity Project window, or select

Assets > Import Package > Custom Package and then select the package file.
5 Click Import in the Import Unity Package dialog box.

 Export to Unity

5-59

Selecting Package Files to Import

The package includes some extra files to add a drivable vehicle to your scene. If you do not need
these extra files, then you can deselect them when you import the package.

The essential scripts inside the "RoadRunner" folder are needed to set up the materials and traffic
signals in the scene.

5 Export Scenes

5-60

Package Contents

• Models: Mesh, materials, and textures for the drivable car prefab.
• Prefabs: The prefab for the car with scripts set up.
• RoadRunner:

• ImportWindow.cs: Editor window to display messages for the RoadRunner importer.
• RoadRunnerImporter.cs: Editor script for importing the FBX file with the data from the XML
file.

• Metadata.cs: Contains classes to hold the imported metadata XML file.
• TrafficJunction.cs: Component for controlling signals from data in the XML file at import time.
• Various shaders to match RoadRunner material settings.

• Scripts: For the Sedan prefab.
• Standard Assets: For the Sedan prefab.

Exporting from RoadRunner to Unity
Follow these steps to export a scene from RoadRunner to Unity:

1 Open your scene in RoadRunner.
2 Export the scene to Unity format using File > Export > Unity (.fbx + .xml) from the menu bar.
3 In the Export Unity dialog box, set your desired options, and then click Export.

 Export to Unity

5-61

4 Browse to open the file dialog box to set the exported file's name and path. The textures and the
XML file are exported to the same folder. (Tip: Create a new folder when choosing a file location,
so you can import the entire folder into Unity.)

• The mesh can be split by segmentation type. Meshes have "<segmentation type>Node" appended
to their names.

• If the Export To Tiles option is selected, meshes are split per tile. Props are grouped by the tile
they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• If Export Individual Tiles is enabled, each tile will be stored in its own FBX file.

• When exporting with Embed Textures selected, you need to manually extract the textures inside
Unity.

Importing into Unity
To import a scene into Unity that you previously exported from RoadRunner, drag all the exported
files (or the entire folder) into the Unity project window. Alternatively, use Assets > Import New
Asset in Unity and select all the exported files.

The output window that opens contains log messages from the import plugin.

5 Export Scenes

5-62

(Optional) Test Drive in Unity

You can place and drive a car model around an imported scene by following these steps:

1 Drag the Sedan prefab from the Prefabs folder into the scene. (Note: In some versions of Unity,
you might need to manually tag the Main Camera as "MainCamera" for some scripts to work.)

2 Click Run.

About Importing Traffic Signals into Unity

If traffic signals were set up in RoadRunner, then they are imported into Unity as junction controllers.
These controllers are automatically created during import and attached to the prefab.

Prop instances for traffic signals are prefixed by their UUID so that the traffic signal controller has a
way to identify which signals it controls. The TrafficJunction script handles the logic for switching
between signal states.

 Export to Unity

5-63

FBX details

The FBX file is identical to the one exported from the Filmbox export option. The only difference is
the extra rrdata.xml metadata file.

Setting Up the Sample Vehicle
The RoadRunnerUnityTool unitypackage also includes the RoadRunner Sedan 3D model. This section
covers how to set it up with Unity Standard Assets.

Note The following section was tested on Unity 2019.1. Older versions might require different steps
to modify prefabs.

Adding the Standard Assets

1 Download the "Standard Assets (for Unity 2017.3)" package from the Unity Asset Store.
2 Select the following folders to import:

• "Standard Assets/Cameras"
• "Standard Assets/CrossPlatformInput/Scripts"
• "Standard Assets/Editor/CrossPlatformInput"
• "Standard Assets/Vehicles/Car"

5 Export Scenes

5-64

3 Import the package by clicking Import.

Setting Up the Sedan Prefab

1 Select the Sedan prefab (located in "Assets/Prefabs") and click Open Prefab in the Inspector
window.

 Export to Unity

5-65

5 Export Scenes

5-66

2 For each Wheel Hub Game Object under "Sedan/WheelsHubs" (for example,
"WheelHubFrontRight"), complete these steps:

a Add the "Wheel Effects" component.

• Set the "Skid Trail Prefab" to the "SkidTrail" Prefab (located in "Assets/Standard Assets/
Vehicles/Car/Prefabs").

b Set the Audio Source's "AudioClip" to the "Skid" sound effect if it is missing.

 Export to Unity

5-67

3 Select the top level "Sedan" game object in the hierarchy window.

5 Export Scenes

5-68

a Add the "Car Controller" component with the following settings.

 Export to Unity

5-69

To avoid errors, verify that the order of the wheels is correct.
b Add the "Car Audio" component with the following settings.

5 Export Scenes

5-70

c Add the "Car User Control" component.

4 Select the "light_brakes" game object.

 Export to Unity

5-71

a Add the "Brake Light" component and set the "Car" property to the top level "Sedan" game
object.

5 Select the "ParticleBurnoutSmoke" game object.

5 Export Scenes

5-72

a Enable the game object.
b Set the Particle System component's Renderer Material property to "ParticleSmokeWhite".

 Export to Unity

5-73

6 Exit Prefab edit mode.

5 Export Scenes

5-74

Setting Up the Camera

1 Delete any existing cameras in the scene.
2 Add the Sedan prefab to the scene.
3 Add the "MultipurposeCameraRig" prefab (located in "Standard Assets/Cameras/Prefabs") to the

scene with the following settings.

Running the Scene

Add in an imported RoadRunner scene and click play to drive around in it.

 Export to Unity

5-75

Export to Unreal Using Datasmith (.udatasmith) File
Unreal Overview
RoadRunner can export scenes to Unreal. The Unreal export option exports a Datasmith
(.udatasmith) file.

On the Unreal side, a plugin is provided to help import the Datasmith file. The plugin handles these
processes:

• Setting up materials

• Reads in material data and maps the data to a new instance of one of the base materials
included with the plugin.

• For transparent material, selects between the translucent and masked blend modes based on
the transparency of the diffuse color.

• Adjusting the colliders in the imported static meshes

• During import, newly created static mesh assets have their Collision Complexity property
set to Use Complex Collision As Simple.

• Unreal software requirements: Unreal Version 4.24+.
• Only C++ based Unreal projects are supported.

Installing the Plugin
Follow the instructions in this section to install the Unreal plugin.

1 See “Downloading Plugins” on page 5-51 for instructions for downloading the latest version of
the plugin.

2 Extract the RoadRunner Plugins ZIP file and locate the RoadRunnerDatasmith,
RoadRunnerImporter, RoadRunnerMaterials, and RoadRunnerRuntime folders under
Unreal/Plugins.

Note The Unreal plugin folder also contains a RoadRunnerCarla integration plugin. Do not
copy this folder if you are not using CARLA.

3 Copy the folders into the Plugins folder under the project directory. If a Plugins folder does
not exist, create one.

5 Export Scenes

5-76

4 Rebuild the plugin.

a Generate the project files. This feature only works on Windows platform.

• Windows — Right-click the .uproject file and select Generate Visual Studio project
files.

b Open the project and build the plugins by clicking Yes.

5 The plugin appears in Unreal under Edit > Plugins. If it does not appear in that menu, check
that the Enabled parameter is selected.

6 In the Unreal editor, add Datasmith Importer plugin. Unreal requires a restart to add the plugin.
The Datasmith plugin appears as a new icon on the Unreal toolstrip.

Plugin Contents

• RoadRunnerDatasmith module:

• Dataprep asset that handles metadata post-processing
• Imports signal data and timing

• RoadRunnerRuntime module:

• Contains component to control traffic signal visuals
• RoadRunnerMaterials plugin:

• Base materials to create instances from

Exporting from RoadRunner to Unreal
Follow these steps to export a scene from RoadRunner to Unreal:

1 Open your scene in RoadRunner.
2 Export the scene using the Unreal option. Select File > Export > Unreal Datasmith

(.udatasmith) from the menu bar.
3 In the Export Unreal dialog box, set the mesh merging and tiling options, and then click Export.

 Export to Unreal Using Datasmith (.udatasmith) File

5-77

4 Select Browse to open the File dialog box and set the exported file's name and path. The
Datasmith file exports to the specified folder.

• You can split the mesh by segmentation type. Meshes have <segmentation type>Node
appended to their names.

• If the Export To Tiles option is selected, meshes are split per tile. Props are grouped by the
tile they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• If Export Individual Tiles is enabled, each tile are stored in its own Datasmith file.

Importing into Unreal
To import the scene into Unreal use the Datasmith icon on the Unreal Editor toolstrip. A window,
Datasmith Import, opens and enables you to select a file with the .udatasmith extension. You can
select the destination folder in the current project.

5 Export Scenes

5-78

When the Unreal Import Options Dialog Box Opens

The Datasmith Import Options dialog box enables you to select which properties to import into the
Unreal Editor. These options include:

• Geometry
• Materials
• Lights
• Cameras
• Animations

sRGB Textures

Unreal Engine does not support 16-bit sRGB textures. Therefore, textures appear to be washed out,
unless you convert the texture files to 8-bit sRGB textures.

Exporting from RoadRunner to Unreal using Datasmith Road
Exporting a RoadRunner scene to Unreal using Datasmith Road enables you to export ASAM
OpenDRIVE data along with the Datasmith file and also adds the metadata to Datasmith export. The

 Export to Unreal Using Datasmith (.udatasmith) File

5-79

metadata stores signalization and ASAM OpenDRIVE IDs. The Datasmith Road export option reduces
the import time for significantly large scenes into Unreal.

Follow these steps to export a scene from RoadRunner to Unreal using Datasmith Road :

1 Open your scene in RoadRunner.
2 Export the scene using the Unreal option. Select File > Export > Datasmith Road

(.udatasmith, .xodr) from the menu bar.
3 In the Export Datasmith Road dialog box, set the mesh merging and tiling options, and then click

Export.

5 Export Scenes

5-80

4 Select Browse to open the File dialog box and set the exported file's name and path. The
Datasmith file exports to the specified folder.

• You can split the mesh by segmentation type. Meshes have <segmentation type>Node
appended to their names.

 Export to Unreal Using Datasmith (.udatasmith) File

5-81

• If the Export To Tiles option is selected, meshes are split per tile. Props are grouped by the
tile they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• If Export Individual Tiles is enabled, each tile are stored in its own Datasmith file.

Importing into Unreal using Datasmith Road
To import the scene into Unreal using Datasmith Road option follow these steps:

1 Right-click in the Content Browser window in Unreal. In the menu, select Show Plugin
Content .

2 Click RoadRunner Datasmith Content . Then select the Dataprep Asset to handle importing
with Datasmith and all the post processing steps.

3 Click the Import button to import a scene into Unreal. A window, Datasmith Import, opens and
enables you to select a file with the .udatasmith extension. You can select the destination
folder in the current project. This loads the selected scene into Unreal. for example, this image
loads the FourWaySignal scene file, which is one of the scenes present in the Scenes folder of
a RoadRunner project.

5 Export Scenes

5-82

4 Click Execute in the Editor toolstrip to run the post-processing steps for the imported scene.
5 Click Commit in the Editor toolstrip to commit these changes to the scene.
6 Click Run in the Editor toolstrip to test out the imported scene. For example, in the

FourWaySignal scene imported with the Unreal using Datasmith Road option, the traffic signal
lights are lit up because the plugin now allows signals to be controlled by their ASAM
OpenDRIVE IDs.

 Export to Unreal Using Datasmith (.udatasmith) File

5-83

Known Issues
In exported scenes, terrain sensors, or any other actor that uses the Unreal Engine line tracing API,
might not detect hits near the road markings that have nonconvex shapes. To enable these detections,
before exporting, float the road markings slightly above the road surface. From the RoadRunner
menu, select Tools > LOD Settings. Then, in the LOD Settings dialog box, set Marking
Construction Type to Floating and increase Floating Marking Offset to 0.005 meters. For more
details on floating lane markings, see “Customize Levels of Detail in Exported Scenes” on page 5-111.

Limitations
• Exporting scenes to Datasmith format does not support Split by Segmentation and Overhead

Tile Rendering LODs options simultaneously. By default, RoadRunner disables Overhead Tile
Rendering LODs option.

• Exporting scenes to Datasmith format does not support Prop Packing LODs.

5 Export Scenes

5-84

Export to Unreal Using Filmbox (.fbx) File

Unreal Overview
RoadRunner can export scenes to Unreal. The Unreal export option exports a Filmbox (.fbx) file and
generates an additional XML file to hold extra data. The XML file holds data for materials and traffic
signals in the scene.

On the Unreal side, a plugin is provided to help import the FBX file by using the information stored in
the XML file. The plugin handles the following:

• Setting up materials

• Material data is read in from the XML file and maps the data into new instance of one of the
base materials included with the plugin.

• Transparent materials will choose between the translucent and masked blend modes based on
the transparency of the diffuse color.

• Adjusting the colliders in the imported static meshes

• During import, newly created static mesh assets have their "Collision Complexity" property set
to "Use Complex Collision As Simple".

• Setting up the traffic signal components:

• Signal data is read in from the XML file and creates a component in the blueprint with the light
bulb names set up during import.

• The traffic signals will cycle through their phases during play mode.
• The UUIDs prefixed in the scene components for prop instances are needed to reference the

static mesh component in the traffic signal script during play mode, so signals will not work if
their names are changed.

• Unreal software requirements: Unreal Version 4.17+
• Only C++ based Unreal projects are supported.

Installing the Plugin
Follow the instructions in this section to install the Unreal plugin.

1 See “Downloading Plugins” on page 5-51 for instructions for downloading the latest version of
the plugin.

2 Extract the RoadRunner Plugins zip file and locate the RoadRunnerImporter,
RoadRunnerRuntime, and RoadRunnerMaterials folders under Unreal/Plugins.

Note The Unreal plugin folder now also contains a RoadRunnerCarla integration plugin. Do
not copy this folder if you are not using CARLA.

The RoadRunnerMaterials plugin. Do not copy this folder if you are not using CARLA.
3 Copy the RoadRunnerImporter, RoadRunnerRuntime, and RoadRunnerMaterials folders

into the Plugins folder under the project directory. If a Plugins folder does not exist, create
one.

 Export to Unreal Using Filmbox (.fbx) File

5-85

4 Rebuild the plugin.

a Generate the project files.

• Windows - Right-click the .uproject file and select "Generate Visual Studio project files."
• Linux - Run this code at the command line:

$UE4_ROOT/GenerateProjectFiles.sh -project="<Path to .uproject file>" -game -engine

Set UE4_ROOT to your Unreal Engine install directory.
b Open the project and build the plugins by clicking Yes.

5 The plugin shows up under Edit > Plugins. If it does not appear in that menu, check that the
Enabled parameter is selected.

Note Ensure that the RoadRunnerMaterials plugin is enabled.

Plugin Contents

• RoadRunnerImporter module:

• Overrides the default FBX importer when the metadata file is present
• Option to overwrite default materials with new materials using the metadata file
• Import signal data and timing

• RoadRunnerRuntime module:

5 Export Scenes

5-86

• Contains component to control traffic signal visuals
• RoadRunnerMaterials plugin:

• Base materials to create instances from

Exporting from RoadRunner to Unreal
Follow these steps to export a scene from RoadRunner to Unreal:

1 Open your scene in RoadRunner.
2 Export the scene using the Unreal option. Select File > Export > Unreal (.fbx + .xml) from the

menu bar.
3 In the Export Unreal dialog box, set the mesh merging and tiling options, and then click Export.

4 Browse to open the file dialog box to set the exported file's name and path. The FBX, textures,
and XML files are exported to the same folder.

• The mesh can be split by segmentation type. Meshes have "<segmentation type>Node"
appended to their names.

• If the Export To Tiles option is selected, meshes are split per tile. Props are grouped by the
tile they are in.

 Export to Unreal Using Filmbox (.fbx) File

5-87

• By default, only one file will be exported. Tiles will be stored in separate nodes.
• If Export Individual Tiles is enabled, each tile will be stored in its own FBX file.

Importing into Unreal
There are multiple ways to import the scene into Unreal:

• Drag the file into the Content Browser.
• Use the "Import" button and select the FBX file.

The plugin checks if there is a RoadRunner XML file associated with the imported file and imports as
normal if a corresponding XML file is not found.

Selecting File > Import Into Level does not use the exported RoadRunner XML and uses the Unreal
importer instead.

Prop Instances are prefixed by their UUID so that the traffic signal controller has a way to identify
which signals it controls.

When the RoadRunner Import Options Dialog Box Opens

• Overwrite Materials

• Overrides the default material importing
• Needs to be unchecked if you want to set the materials to "Use Existing" in the next dialog box

• Import Signal Visuals

• Functional only when "Create one Blueprint asset" is selected in the next dialog box

When the FBX Scene Import Options Dialog Box Opens

1 Set Scene > Hierarchy Type to Create one blueprint asset (selected by default).

Note Only the Create one blueprint asset import option works with materials, signals,
and transparency sorting. The Create one Actor with Components and Create Level

5 Export Scenes

5-88

Actors options import only materials. If your scene contains traffic signals, use the Create one
blueprint asset import option.

2 Select Texture > Invert Normal Maps if needed. This texture option inverts the orientation of
normal maps, because Unreal uses the DirectX normal map format, which inverts the y-axis
relative to the OpenGL format.

3 Set Static Meshes > Normal Import Method to Import Normals. Unreal generates its own
normals, by default, to best suit its rendering needs. Because the Unreal method uses smoothing
groups to calculate normals, which are not exported by RoadRunner, some geometries have hard
edges when they should be smooth. Selecting this option enables smooth edges by importing the
normals from the .fbx file, instead of using the default normals generated by Unreal.

 Export to Unreal Using Filmbox (.fbx) File

5-89

4 (Optional) Clear the Remove Degenerates parameter. Due to scaling between Maya® and
Unreal, Unreal considers the mesh data for some props in RoadRunner to be very small, which
causes Unreal to remove the geometry. Clearing this parameter prevents Unreal from
unexpectedly removing these props.

5 (Optional) Clear the Build Adjacency Buffer. Selecting this parameter is required for PNT
Tessellation, but it slows down the import process. Clearing this parameter for large meshes
improves the performance of the import process.

6 (Optional) Clear the Generate Lightmap UVs parameter. The default lightmap resolution is too
small for large terrains. Clearing this parameter enables the terrain to be lit dynamically.

7 Click Import.

About Importing Traffic Signals into Unreal

If traffic signals were set up in RoadRunner, they are imported into Unreal as
RoadRunnerTrafficJunction components. These controllers are automatically created during import
and included in the created blueprint.

The RoadRunnerTrafficJunction component handles the logic for switching between signal states.
UUIDs are used to match to specific game objects in the scene.

FBX Details

The FBX file automatically splits the mesh by transparency sorting layer. This is due to Unreal storing
"Translucency Sort Priority" on the static mesh component.

sRGB Textures

Unreal Engine does not support 16-bit sRGB textures. Therefore, textures appear to be washed out,
unless the texture files are converted to 8-bit sRGB textures.

5 Export Scenes

5-90

Large Scene Optimizations

Using the "Create one Actor with Components" option can be more efficient. However, signals will not
be set up.

Importing Without the Plugin
This section covers fixes handled automatically by the RoadRunner plugin.

Fix Stretched Textures

Meshes with UV coordinates far away from the 0 to 1 range can cause issues in Unreal. On Static
Mesh assets with this issue, the "Use Full Precision UVs" option can be set to fix it.

 Export to Unreal Using Filmbox (.fbx) File

5-91

Fix Objects Floating Above the Road

Static Mesh assets need to have their Collision Complexity property set to "Use Complex Collision As
Simple". Otherwise, collision boxes need to be manually added.

5 Export Scenes

5-92

Known Issues
In exported scenes, terrain sensors or any other actor that uses the Unreal Engine line tracing API,
might not detect hits near the road markings that have nonconvex shapes. To enable these detections,
before exporting, float the road markings slightly above the road surface. From the RoadRunner
menu, select Tools > LOD Settings. Then, in the LOD Settings dialog box, set Marking
Construction Type to Floating and increase Floating Marking Offset to approximately 0.005
meters. For more details on floating lane markings, see “Customize Levels of Detail in Exported
Scenes” on page 5-111.

 Export to Unreal Using Filmbox (.fbx) File

5-93

Export to CARLA

CARLA Export Overview
RoadRunner can export scenes to the CARLA simulator. The CARLA export provides two options:

• CARLA: Exports an Unreal Datasmith (.udatasmith) file and an ASAM OpenDRIVE (.xodr) file.
• CARLA Filmbox : Exports a Filmbox (.fbx) file, an XML for some metadata, and an ASAM

OpenDRIVE (.xodr) file. The XML file holds data for materials in the scene.

On the CARLA or Unreal side, a plugin is provided to help import the exported scene from
RoadRunner.

For the scene exported using the CARLA plugin, the plugin provided on the Unreal side handles the
following:

• Setting up materials

• Material data is read in from the Datasmith (.udatasmith) file and maps the data into a new
instance of one of the base materials included with the plugin.

• Transparent materials will choose between the translucent and masked blend modes based on
the transparency of the diffuse color.

• Adjusting the colliders in the imported static meshes

• During import, newly created static mesh assets have their "Collision Complexity" option set to
"Use Complex Collision As Simple".

• Setting up the traffic signal visuals

• Traffic signal logic is hooked up to the simulator.
• Software requirements

• CARLA 0.9.13

For the scene exported using the CARLA Filmbox plugin, the plugin provided on the Unreal side
helps to import the FBX file by using the information stored in the XML file. The plugin handles the
following:

• Setting up materials

• Material data is read in from the XML file and maps the data into a new instance of one of the
base materials included with the plugin.

• Certain materials will instantiate from one of the CARLA materials.
• Transparent materials will choose between the translucent and masked blend modes based on

the transparency of the diffuse color.
• Adjusting the colliders in the imported static meshes

• During import, newly created static mesh assets have their "Collision Complexity" option set to
"Use Complex Collision As Simple".

• Setting up the traffic signal visuals

• Traffic signal logic is not hooked up to the simulator.

5 Export Scenes

5-94

https://github.com/carla-simulator/carla

• Software requirements

• CARLA 0.9.13

Installing the Plugins
Follow the instructions in this section to install the Unreal plugin:

1 Build CARLA from its source. For more information, see the Windows build page of the Building
CARLA instructions.

2 See “Downloading Plugins” on page 5-51 for instructions for downloading the latest version of
the plugin.

3 Extract the RoadRunner Plugins zip file and locate the RoadRunnerImporter,
RoadRunnerCarlaIntegration, RoadRunnerRuntime, RoadRunnerDatasmith,
RoadRunnerCarlaDatasmith, and RoadRunnerMaterials folders under "Unreal/Plugins".

4 Copy the RoadRunnerImporter, RoadRunnerCarlaIntegration, RoadRunnerRuntime,
RoadRunnerDatasmith ,RoadRunnerCarlaDatasmith, and RoadRunnerMaterials folders
into the Plugins folder under the CarlaUE4 project directory, located at <carla>/Unreal/
CarlaUE4/Plugins (next to the Carla folder).

5 Rebuild the plugin. First, generate the project files.

• If you are on Windows, right-click the .uproject file and select Generate Visual Studio
project files.

• If you are on Linux, run this code at the command line:
$UE4_ROOT/GenerateProjectFiles.sh -project="<CarlaFolderPath>/Unreal/CarlaUE4/CarlaUE4.uproject" -game -engine

Set UE4_ROOT to your Unreal Engine install directory.

Then, open the project and build the plugins. If you are on Windows, run "make launch" in x64
Native Tools Command Prompt for VS 2019 to compile the plugin and launch the editor.

6 The plugins shows up under Edit > Plugins. If it does not appear in that menu, check that the
Enabled check box is on.

 Export to CARLA

5-95

https://carla.readthedocs.io/en/latest/build_windows/
https://carla.readthedocs.io/en/latest/build_windows/

Plugin Contents

• RoadRunnerImporter module:

• Overrides the default FBX importer when the metadata file is present
• Option to overwrite default materials with new materials using the metadata file
• Import signal data and timing

• RoadRunnerRuntime module:

• Contains component to control traffic signal visuals
• RoadRunnerCarlaIntegration module:

• Creates a new map and imports the FBX into the level
• Moves static mesh assets based on segmentation type

5 Export Scenes

5-96

• Creates materials instantiated from CARLA materials for weather effects
• Generates the routes from the ASAM OpenDRIVE file

• RoadRunnerMaterials plugin:

• Base materials to create instances from
• RoadRunnerDatasmith plugin:

• Dataprep asset that handles metadata post-processing
• Imports signal data and timing

• RoadRunnerCARLADatasmith plugin:

• Imports RoadRunner scenes into CARLA, automatically setting up traffic signals.

Exporting from RoadRunner to CARLA
Export Using CARLA Plugin

CARLA plugin (.udatasmith + .xodr). is the recommended method to export to CARLA. Exporting
a RoadRunner scene to CARLA using CARLA (.udatasmith + .xodr) plugin enables you to export
ASAM OpenDRIVE data along with the Datasmith file and also adds the metadata to Datasmith
export. The metadata stores signalization and ASAM OpenDRIVE IDs. The CARLA export option
reduces the import time for significantly large scenes into CARLA.

Follow these steps to export a scene from RoadRunner to Unreal using CARLA (.udatasmith
+ .xodr):

1 Open your scene in RoadRunner.
2 Export the scene using the CARLA (.udatasmith + .xodr) option. Select File > Export >

CARLA (.udatasmith, .xodr) from the menu bar.
3 In the Export CARLA Road dialog box, set the mesh merging and tiling options, and then click

Export.
4 Select Browse to open the File dialog box and set the exported file's name and path. The

Datasmith file exports to the specified folder.

• You can split the mesh by segmentation type. Meshes have <segmentation type>Node
appended to their names.

• If the Export To Tiles option is selected, meshes are split per tile. Props are grouped by the
tile they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• If Export Individual Tiles is enabled, each tile are stored in its own Datasmith file.

Export Using CARLA Filmbox

If you want to use export using the older pipeline, use the CARLA plugin (.fbx + .rrdata.xml
+ .xodr) option. Follow the steps below to export a scene from RoadRunner to CARLA using the
CARLA Filmbox plugin (.fbx + .rrdata.xml + .xodr) option:

1 Open your scene in RoadRunner.
2 Export the scene using the CARLA option. Select File > Export > CARLA Filmbox(.fbx + .xml

+ .xodr) from the menu bar.

 Export to CARLA

5-97

3 In the Export CARLA dialog box, set the mesh tiling on the FBX tab and the ASAM OpenDRIVE
options on the OpenDRIVE tab as needed. Then, click Export.

4 Browse to open the file dialog box to set the exported file's name and path. The FBX, textures,
XML, and ASAM OpenDRIVE files are exported to the same folder.

• The mesh can be split by segmentation type. Meshes have "<segmentation type>Node"
appended to their names.

• If the Export To Tiles option is selected, meshes are split per tile and props are grouped by
the tile they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• If Export Individual Tiles is enabled, each tile is stored in its own FBX file.

• Note The plugin does not fully support the Export Individual Tiles option.

Importing into CARLA
Import to CARLA

Follow these steps to import the scene into CARLA if you exported the RoadRunner scene using
CARLA (.udatasmith + .xodr) option:

1 Make a copy of the BaseMap and save it to the Maps folder. Rename the new map.

2 Open the new map that you created in the previous step.
3 Right-click in the Content Browser window in Unreal. In the menu, select Show Plugin

Content .

5 Export Scenes

5-98

4 Click RoadRunner CARLADatasmith Content . Then select the RRCARLADataprep Asset to
handle importing with Datasmith and all the post processing steps.

5 Click the Import button to import a scene into Unreal. For example, this image loads the
FourWaySignal scene file, which is one of the scenes present in the Scenes folder of a
RoadRunner project.

 Export to CARLA

5-99

6 Click Execute in the Editor toolstrip to run the post-processing steps for the imported scene.
7 Click Commit in the Editor toolstrip to commit these changes to the scene.
8 Visualize the routes in the scene. Add an Open Drive Actor to the scene.

Select Add Spawners and click Generate Routes.

5 Export Scenes

5-100

9 The scene is now imported and ready to simulate on.

Import to CARLA (Filmbox)

Follow these steps if you used the CARLA Filmbox plugin while exporting the RoadRunner scene.

• Drag the file into the Content Browser.
• Use the "Import" button and select the FBX file.

The plugin checks if there is a RoadRunner XML file associated with the imported file, and imports as
normal if a corresponding XML file is not found.

Selecting File > Import Into Level does not use the exported RoadRunner XML and uses the Unreal
importer instead.

 Export to CARLA

5-101

When the RoadRunner Import Options Dialog Box Opens

• Overwrite Materials

• Overrides the default material importing. Instances from CARLA materials for roads and
foliage.

• Needs to be unchecked if you want to set the materials to "Use Existing" in the next dialog box.
• Import Signal Visuals

• Only functional when the "Create one Blueprint asset" option is selected in the next dialog box.

Note The Importing Signal Visuals option does not have any effect on the traffic simulation.

When the FBX Scene Import Options Dialog Box Opens

1 Set Scene > Hierarchy Type to "Create One Blueprint Asset" (selected by default).

Note Only the "Create one Blueprint asset" import option works with materials, signals, and
transparency sorting. The "Create one Actor with Components" and "Create Level Actors"
options import only materials.

2 Select Invert Normal Maps, if needed.

5 Export Scenes

5-102

3 Set Static Meshes > Normal Import Method to "Import Normals".

4 (Optional) Uncheck Remove Degenerates, which can help for some props created in a larger
scale.

5 Click Import.

 Export to CARLA

5-103

About Importing Traffic Signals into Unreal

If traffic signals were set up in RoadRunner, they are imported into Unreal as
RoadRunnerTrafficJunction components. These controllers are automatically created during import
and included in the created blueprint.

The RoadRunnerTrafficJunction component handles the logic for switching between signal states.
UUIDs are used to match to specific game objects in the scene.

FBX Details

The FBX file will automatically split the mesh by segmentation and transparency sorting layer due to
the following:

• Segmentation: CARLA determines segmentation by static mesh assets.
• Transparency sorting: Unreal stores the "Translucency Sort Priority" value on the static mesh

component.

Testing the map

1 Click Play in the editor (the first time you click Play takes extra time to build the map).

2 Run the example Python® scripts.

5 Export Scenes

5-104

 Export to CARLA

5-105

Export to VTD
RoadRunner has a combination exporter for exporting scenes to VIRES Virtual Test Drive (VTD)

RoadRunner provides a VTD export option that exports an ASAM OpenDRIVE (.xodr) file for the
road network and an OpenSceneGraph (.ive) file for the visual scene.

Exporting to VTD
From the menu, select File > Export > VTD (.xodr + .ive).

Export Options (ASAM OpenDRIVE)

5 Export Scenes

5-106

Export Options (OpenSceneGraph)

Split by Segmentation

This option will split meshes by their segmentation type on page 5-49.

Tiling

The Export To Tiles option splits the meshes per tile. This parameter also groups props by the tile
they are in.

• By default, only one file is exported. Tiles are stored in separate nodes.
• VTD does not support scenes tiled to separate files.

 Export to VTD

5-107

Import into VTD
Once exported from RoadRunner, the scene can be imported into VTD.

1 (Optional) Convert the OpenSceneGraph IVE file to an OSGB file by using OpenSceneGraph
version 3.2.3.

2 Copy the exported files (ASAM OpenDRIVE and IVE files) to your current project in the
Databases folder. Placing the files in a separate folder is recommended.

3 Open VTD.

4 Open the OpenDRIVE Scenario Editor and click New.

5 Export Scenes

5-108

5 Click the Properties button.
6 Select the location of the Layout File (ASAM OpenDRIVE) and Visual Database (IVE).

7 Insert at least an ego vehicle.
8 Save the scenario.
9 Select the scenario in VTD.

 Export to VTD

5-109

10 Run the scenario.

Limitations
Refer to “Export to OpenSceneGraph” on page 5-7 for further details on limitations.

5 Export Scenes

5-110

Customize Levels of Detail in Exported Scenes
To improve simulation performance in exported scenes, you can set different levels of detail (LODs) to
render at specified distances away from the simulator camera. For example, you can specify lower
LODs at distances thousands of meters away, where the reduction in scene quality is acceptable.
Export of LODs is supported for FBX files only.

Each LOD you add linearly increases the time it takes to export a scene. However, the substantial
performance gains you can achieve by specifying differing LODs can make up for the increased
export cost.

Set Levels of Detail in Scene
Open a scene that contains multiple LODs. From the File menu, select Open Scene. Then, select
FourWaySignal.rrscene, which is one of the prebuilt scenes included with new RoadRunner
projects.

Open the LOD settings for the scene. From the Tools menu, select LOD Settings. In the left pane of
the LOD Settings dialog box, the scene has three LODs: LOD 0, LOD 1, and LOD 2.

You can add new LODs by clicking Add LOD. Each LOD you add clones the settings from the previous
LOD. RoadRunner does not limit the number of LODs you can add, but each LOD increases export
time. The size of the export also increases, because RoadRunner exports a different rendering of the
scene at each LOD.

Select the different LODs and notice the change in LOD settings in the right pane. The LOD
Distance parameter controls the LOD settings to use at distances relative to the simulator camera.
This table describes the LOD Distance settings for the FourWaySignal scene.

 Customize Levels of Detail in Exported Scenes

5-111

Level of Detail LOD Distance Description
LOD 0 1000.0 Use the defined LOD settings at

ranges from 0 to 1000 meters
away from the camera.

LOD 1 2000.0 Use the defined LOD settings at
ranges (1000,2000] meters
away from the camera.

LOD 2 3000.0 Use the defined LOD settings at
ranges 3000 or more meters
away from the camera.

The other dialog box parameters control scene triangulation, overhead scene rendering, and prop
packing.

Export Highest Levels of Detail from a Scene
Open a scene that contains multiple LODs. From the File menu, select Open Scene. Then, select
FourWaySignal.rrscene, which is one of the prebuilt scenes included with new RoadRunner
projects.

Click the Scene Export Preview Tool button .

You can export only the highest LODs by selecting Export Only Highest LODs from the Attributes
pane. Selecting this option allows you to export only the highest LODs for all props in the scene. This
parameter reduces the export time of the scene since other LODs are striped off from the scene,
leaving only the highest LODs to be exported.

Export Only Highest LODs is also available as a menu option when exporting a scene to AutoCAD,
Filmbox, glTF, OpenFlight, OpenSceneGraph, USD, CARLA, Metamoto, Unity, Unreal, Datasmith, and
VTD. The STL and OBJ file formats use this option by default.

5 Export Scenes

5-112

Modify Triangulation Settings
The LOD Settings dialog box includes several parameters that control the number of triangles used to
render the scene geometry. Increasing these values reduces the amount of scene triangulation, which
speeds up rendering performance at the expense of scene quality.

In the FourWaySignal scene, view how the triangulation decreases in the scene at the different LOD
distances. First, press F3 to display the shaded wireframe of the scene on the scene editing canvas.
Then, in the LOD Settings dialog box, select Preview Live and change between LODs in the left pane.
The amount of triangulation decreases significantly at each successive LOD.

LOD 0 LOD 1 LOD 2

Press F3 again to turn off the shaded wireframe.

Positional Tolerance Parameter

The Positional Tolerance parameter controls the maximum deviation in meters between sampled
polylines and their underlying analytical representation. As this value decreases, the number of
samples and triangles produced increases. This table shows the difference in triangulation at varying
Positional Tolerance values.

Positional Tolerance = 0.005 Positional Tolerance = 0.01 Positional Tolerance = 0.1

Max Length Parameter

The Max Length parameter controls the maximum length between any two samples in the curve
triangulation. This table shows the difference in triangulation at varying Max Length values.

Max Length = 50.0 Max Length = 10.0 Max Length = 1.0

Height Field Sampling Parameters

The LOD Settings dialog box contains several parameters that affect the amount of triangulation used
to render elevation changes in the scene.

 Customize Levels of Detail in Exported Scenes

5-113

The Height Tolerance parameter controls whether to include elevation samples in terrain
triangulation relative to the elevation of neighboring samples. Roads are not included in the terrain
triangulation. Height tolerance is in meters. As the tolerance decreases, the difference between
samples and the underlying elevation field with respect to elevation decreases. Typically, a low
tolerance produces a large number of triangles. This table shows the difference in triangulation at
varying Height Tolerance values.

Height Tolerance = 0.5 Height Tolerance = 0.05 Height Tolerance = 0.005

The Height Min Spacing parameter controls the minimum distance, in meters, between samples
and their neighbors. In general, the lower the tolerance, the closer the samples are allowed to be.
Typically, a lower tolerance produces a greater number of triangles. This table shows the difference
in triangulation at varying Height Min Spacing values.

Height Min Spacing = 5.0 Height Min Spacing = 1.0 Height Min Spacing = 0.1

The Height Max Spacing parameter controls the maximum distance, in meters, between samples
and their neighbors. In general, the lower the tolerance, the closer the samples are required to be.
Typically, a lower tolerance produces a greater number of triangles. This table shows the difference
in triangulation at varying Height Max Spacing values.

Height Max Spacing = 5.0 Height Max Spacing = 2.0 Height Max Spacing = 0.5

The Road to Surface Blend Range parameter controls the amount of distance, in meters, between
the surface triangles and any adjacent edge. Typically, a lower blend range produces a greater
number of triangles. This table shows the difference in triangulation at varying Road to Surface
Blend Range values.

Road to Surface Blend Range = 5.0 Road to Surface Blend Range = 1.0

The Uniform Road Sampling parameter enables uniform tessellation and specifies sampling
distance for roads and lanes. This allows samples to be taken from between the lane cross sections
and lane boundaries. It also adds the ability to sample roads based on uniform values. Check the

5 Export Scenes

5-114

Uniform Road Sampling button and specify the Road Sample Spacing to sample roads on uniform
values.

Marking Projection Parameters

Every marking in RoadRunner is projected onto the underlying road or terrain surface to improve
visual quality and avoid rendering issues such as z-fighting. The images in this table show the result
of projecting markings onto a complex road surface.

Consider "SLOW" road marking stencils projected onto a road that has an exaggerated height bump.

When you select one of the stencils by using the Marking Point Tool , the original flat stencil
does not line up well with the underlying surface.

After adjusting the marking projection parameters in the LOD Settings dialog box, the triangulation
of the marking outline matches the marking on the road surface.

 Customize Levels of Detail in Exported Scenes

5-115

The Marking Construction Type parameter controls whether to stitch markings into the underlying
road and terrain surface or to float the markings a small distance above the surface once they are
projected. Floating markings, also known as decals, produce fewer triangles overall and allow for a
more regular road surface triangulation. However, floating markings might require more handling
once exported from RoadRunner to avoid z-fighting.

This image shows the sample markings produced when you set Marking Construction Type to Cut
Out. The asphalt surface is triangulated around the "SLOW" stencil markings.

This image shows the sample markings produced when you set Marking Construction Type to
Floating. The asphalt surface triangulation passes beneath the marking geometry.

5 Export Scenes

5-116

The Floating Marking Offset parameter controls how much to float a marking above the underlying
surface. The lower the value, the smaller the gap between the markings and the surface. With lower
values, the likelihood of rendering artifacts, such as z-fighting, increases.

Floating Marking Offset = 0.01 Floating Marking Offset = 0.5

Modify Scene Rendering
To further improve scene performance, you can select Overhead Tile Rendering to flatten the scene
into a single texture image per exported tile. RoadRunner flattens roads, lanes, curbs, and terrain
into this image but excludes props. Selecting this option can dramatically improve simulation
performance. However, the reduction in scene quality is high, so reserve this optimization for high
LOD distances only.

In the LOD Settings dialog box for the FourWaySignal scene, select LOD 2. This LOD has Overhead
Tile Rendering enabled. You can select additional options to customize the tile rendering:

• Texture Resolution — Set the pixel resolution of the textures. Decrease this value to speed up
simulation performance at the expense of texture image quality.

• Use Simplified Mesh — Simplify the mesh geometry of the texture image into a grid, which
reduces the amount of triangles used to render the tile.

• Simplified Grid Resolution — Set the number of squares in the triangulation grid. Reduce this
value to reduce the number of triangles used to construct the grid at the expense of texture image
quality. To enable this option, you must select Use Simplified Mesh.

Select Use Simplified Mesh and leave Simplified Grid Resolution set to 10 to render the tiles
using 10-by-10 mesh grids. Click OK.

Preview how the texture image looks by clicking the Scene Export Preview Tool.

 Customize Levels of Detail in Exported Scenes

5-117

1

Click the Scene Export Preview Tool button . The scene editing canvas displays the four
tiles that are exported from the scene.

2 In the Attributes pane, select Visualize Camera LOD Distance.
3 Set the Camera LOD Distance to 3000, which is the distance at which LOD 2 starts.
4 Click Refresh Scene. RoadRunner combines scene objects into one texture image per tile. Only

the traffic signal props at the intersection remain selectable. The scene quality is noticeably
diminished but in simulators that use this scene, this image is used only when the scene is
viewed from 3000 meters away.

5 Select the black corner of one of the tiles to view the mesh grid of the tile. The tile is rendered
using a simple 10-by-10 triangular mesh.

5 Export Scenes

5-118

Pack Props
To improve simulation performance even more, you can pack all props into a single prop model per
export tile. With packed props, all textures in a tile are combined into a maximum of two atlas
textures: one for opaque materials and one for transparent materials. This optimization can greatly
reduce the amount of state changes that the rendering engine of the target simulator uses. Prop
packing reduces the amount of texture detail for props and lowers visual quality, so reserve this
optimization for high LOD distances only.

View the effects of prop packing on the FourWaySignal scene.

1 Open the LOD Settings dialog box for the FourWaySignal scene. From the Tools menu, select
LOD Settings.

2 In the left pane of the dialog box, select LOD 2.
3 Select Pack Props.
4 (Optional) Modify the Atlas Resolution parameter. This option changes the number of pixels

used to render props. Decrease this value to improve simulation performance at the cost of visual
quality.

5 Click OK.
6

Click the Scene Export Preview Tool button .
7 Focus the camera on the prop assembly in Tile_1_0. This assembly contains a "No U-Turn" sign

and traffic lights. In the Attributes pane, check that Visualize Camera LOD Distance is
selected and toggle the Camera LOD Distance attribute above and below the LOD 2 threshold
of 3000 meters. When the camera distance is at LOD 2, prop packing is enabled and the textures
of the prop assembly combine into one model. RoadRunner removes the sign face and simplifies
the traffic light textures.

 Customize Levels of Detail in Exported Scenes

5-119

Prop Packing Disabled Prop Packing Enabled

To view all the packed props of a tile, you can select them from the hierarchy of mesh nodes in each
tile. In the Attributes pane of the Scene Export Preview Tool, under Mesh Node Tree, navigate to
Tile_1_0. Then, select PropLodGroup_1.

The Props_1 group lists every individual prop on the tile, with each prop having its own mesh.
Expand this group, select a prop, and view the corresponding mesh selected in the scene editing
canvas. For example, this image shows a selected traffic light post prop.

Select the PackedProps_2_1 mesh node. In the scene editing canvas, all meshes are now collapsed
into a single selectable mesh.

5 Export Scenes

5-120

Visualize Performance Improvements
As an additional form of verification, you can visualize the number of draw calls that an external
simulator needs to make to render the scene at varying LODs.

From the View menu, select Sensor, then Draw Calls. With this sensor selected, RoadRunner
segments the scene by color, where each color represents a separate draw call.

In the FourWaySignal scene, with the Scene Export Preview Tool still enabled, set the Camera
LOD Distance attribute below 3000 meters. At these close distances, the simulators make a high
number of draw calls to render the roads, terrain, and props.

Set the Camera LOD Distance attribute above 3000 meters. At this distance, prop packing and tile
rendering are enabled, so the simulators make significantly fewer draw calls to render the scene.

 Customize Levels of Detail in Exported Scenes

5-121

Export Scene
RoadRunner supports the exporting of multiple LODs to FBX files only. If you export to a format other
than FBX, then RoadRunner uses the LOD settings specified by LOD 0.

Export the scene as an FBX file. From the Export menu, select Filmbox (.fbx).

Open the folder to which you exported the scene. By default, scenes export to the Exports folder of
the current RoadRunner project.

The exported FBX data includes the texture atlases used at the varying levels of detail. For more
details on the exported FBX data, see “Export to FBX” on page 5-3.

See Also
Scene Export Preview Tool

Related Examples
• “Export to FBX” on page 5-3

5 Export Scenes

5-122

Export Custom Formats
You can export RoadRunner scenes to a variety of file formats. These exporting options are available
from the File menu, under Export. You can also configure this menu to include custom export options
that combine the different file formats that RoadRunner supports. To specify a custom configuration,
follow these steps:

1 Create an XML file that configures the details of the custom export format.
2 Save the XML file to the Project folder of the RoadRunner project that you want to contain the

export option and name it ExportConfigurations.xml.

Create Export Configuration XML File
To enable custom exports, you must specify an export configuration XML file similar to the one shown
here. This sample file specifies a custom option that exports an FBX file, ASAM OpenDRIVE file,
GeoJSON file, and RoadRunner scene metadata file together in one zip file.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ExportConfigurations>
 <Configuration name="My Custom Format" zip="true" extension="zip">
 <Format name="Filmbox" extension="fbx">
 <Option name="ExportToTiles" value="true" type="bool"/>
 <Option name="ExportIndividualTiles" value="true" type="bool"/>
 <Option name="TileSize" value="1000,1000" type="vec2"/>
 <Option name="Center" value="0,0" type="vec2"/>
 <Option name="SpecularMapAsRoughnessMap" value="true" type="bool"/>
 <Option name="Offset" value="0,0,-72.226989" type="vec3"/>
 </Format>
 <Format name="OpenDRIVE" extension="xodr">
 <Option name="ExportIndividualRoadMarkings" value="false" type="bool"/>
 <Option name="ExportSignals" value="true" type="bool"/>
 <Option name="ExportObjects" value="true" type="bool"/>
 <Option name="ExportConflictPoints" value="false" type="bool"/>
 <Option name="ExportSceneReference" value="false" type="bool"/>
 <Option name="QuantizeRoads" value="true" type="bool"/>
 <Option name="VerticalOffset" value="-72.226989" type="double"/>
 </Format>
 <Format name="GeoJSON" extension="geojson"/>
 <Format name="Scene Metadata" extension="xml"/>
 </Configuration>
</ExportConfigurations>

<ExportConfigurations> Element

The top-level element of the XML file, <ExportConfigurations>, is required. This element
contains all the custom export configurations that appear in the File menu, under Export.

<Configuration> Elements

The <ExportConfigurations> element can contain one or more <Configuration> elements.
Each <Configuration> element corresponds to a custom export format that appears in the File
menu, under Export. This table describes the attributes that you can specify for this element.

 Export Custom Formats

5-123

<Configuration> Attribute Optional or Required Description
name Required Name of the exported file,

specified as a string.
extension Required Extension of the exported file,

specified as a string.
zip Optional Option to export the custom

format as a zipped file, specified
as false or true. If you specify
zip as true, then specify
extension as a zip file
extension, such as zip or rar.

Default: false

<Format> Elements

Each <Configuration> element can contain one or more <Format> elements. These elements
correspond to the file formats that RoadRunner exports as part of the custom configuration. This
element requires a name attribute, which specifies the name of a file format that RoadRunner
supports. This element also includes an optional extension attribute, which specifies the extension
of the exported file. If you do not specify this attribute, then the exported file has the default
extension for that file format.

This table lists the format names that you can specify for this attribute and their corresponding valid
extensions. These attributes are case sensitive. If you specify an invalid attribute, then the export
dialog box does not include a tab for that format.

name Attribute Valid extension
Attributes

Description Export Format Details

AutoCAD dxf (default) Export scene to an
AutoCAD file.

“Export to AutoCAD” on
page 5-2

Filmbox fbx (default) Export scene to a
Filmbox file.

“Export to FBX” on
page 5-3

glTF gltf (default) Export scene to a GL
Transmission Format
(glTF) file.

“Export to glTF” on
page 5-5

OpenFlight flt (default) Export scene to an
OpenFlight file.

“Export to OpenFlight”
on page 5-6

OpenSceneGraph osg (default) Export scene to an
OpenSceneGraph file.

“Export to
OpenSceneGraph” on
page 5-7

USD usd (default) Export scene to a
Universal Scene
Description (USD) file.

“Export to USD” on
page 5-15

Wavefront obj (default) Export scene to a
Wavefront OBJ file.

“Export to Wavefront
OBJ” on page 5-8

5 Export Scenes

5-124

name Attribute Valid extension
Attributes

Description Export Format Details

OpenDRIVE xodr (default) Export scene to an
ASAM OpenDRIVE file.

“Export to ASAM
OpenDRIVE” on page 5-
24

Apollo xml (default) Export scene to the
Baidu Apollo file format.

“Export to Apollo” on
page 5-54

GeoJSON geojson (default) Export scene to a
GeoJSON file.

“Export to GeoJSON” on
page 5-9

Scene Metadata xml (default) Export scene metadata
to an XML file.

“RoadRunner Metadata
Export” on page 5-52

<Option> Elements

Each <Format> element can optionally include <Option> elements. These elements specify options
for configuring your export formats. If you do not specify an option, then RoadRunner assigns the
default value to that option. Each <Option> element that you do specify must include these
attributes:

• name — Name of option
• value — Value of option
• type — Data type of option

This table describes the option attributes that you can specify for mesh export formats, which apply
to these formats:

• AutoCAD
• Filmbox
• glTF
• OpenSceneGraph
• USD
• Wavefront

name Attribute Description value Attribute type Attribute
SplitBySegmentatio
n

Split meshes by their
segmentation type. For
more details, see
“Segmentation” on page
5-49.

false (default) | true bool

PowerOfTwoTextures Resize the dimensions
of exported textures by
rounding them up to the
next highest power of
two.

false (default) | true bool

ExportToTiles Split meshes per tile. false (default) | true bool

 Export Custom Formats

5-125

name Attribute Description value Attribute type Attribute
TileSize Specify the size of

exported tiles, when
ExportToTiles is
true.

0,0 (default) | two-
element real-valued
vector

vec2

ExportIndividualTi
les

Export tiles to separate
files.

false (default) | true bool

EmbedTextures Embed the exported
textures inside the
exported file.

false (default) | true bool

LodAsPercentage Specify levels of detail
by percentage.

false (default) | true bool

CollapseMesh Export the scene as a
single mesh rather than
as multiple nodes.

false (default) | true bool

SplitByPass Split meshes by
triangulation pass, for
example, separating
markings or damage
from the road surface.

false (default) | true bool

SplitByMaterial Split meshes by
material.

false (default) | true bool

SpecularMapAsRough
nessMap

Use the specular map as
the roughness map.

false (default) | true bool

UnityLods Export levels of detail
for use with Unity.

false (default) | true bool

Offset Specify additional
(x,y,z) offset for
exported scene.

0,0,0 (default) | three-
element real-valued
vector

vec3

This table describes the option attributes that you can specify for mesh export formats, which apply
to these formats:

• OpenDRIVE
• Apollo

name Attribute Description value Attribute type Attribute
QuantizeRoads Perform quantization to

prevent very short
roads or lanes.

true (default) | false bool

DatabaseVersion Specify an identifier for
the exported scene,
which is useful for
versioning exports of
the same scene.

1.0 | positive real
scalar

double

5 Export Scenes

5-126

name Attribute Description value Attribute type Attribute
DatabaseName Specify the name of the

exported scene.
"" | string string

ExportIndividualRo
adMarkings

Export road markings
using the <line>
definition in ASAM
OpenDRIVE.

false (default) | true bool

ExportSignals Export all signals and
signs mapped to
junctions as <signal>
entries.

true (default) | false bool

ExportObjects Export all props as
<object> entries.

true (default) | false bool

ExportConflictPoin
ts

Export conflict points,
that is, point in
junctions at which
connecting roads
overlap.

false (default) | true bool

ExportSceneReferen
ce

Include <object>
element at (0,0) in
exported file to use as a
reference point.

false (default) | true bool

ReduceFileSize Remove new lines from
exported file to reduce
file size.

false (default) | true bool

VerticalOffset Specify vertical offset
for exported scene.

0 | nonnegative real
scalar

double

For the GeoJSON format, ReduceFileSize is the only valid option.

The Scene Metadata format does not have any options.

Save Export Configuration File to Project
Save the XML file containing your export configurations to the Project folder of your project and
give it the name ExportConfigurations.xml. If you do not save the file to this folder and with this
name, then RoadRunner does not recognize the custom export formats.

After saving the file, restart RoadRunner and open a scene in the project that has the
ExportConfigurations.xml file. In the File menu, under Export, the custom format options are
now included at the bottom of the list. This figure shows a sample custom format option.

 Export Custom Formats

5-127

See Also

Related Examples
• “Export Scenes”
• “RoadRunner Project and Scene System” on page 2-2

5 Export Scenes

5-128

Export to STL
RoadRunner can export scenes to the STL file format.

STL Export
From the File menu, select Export, then STL (.stl) to open the Export STL dialog box. Then, specify
a path to which to export the file, and click Export.

Advanced Details
STL files support both ASCII and binary file formats. The ASCII version of an STL file is larger than
the equivalent binary STL file. RoadRunner exports the scenes to only the binary STL file format, but
supports importing from both binary and ASCII-formatted STL files. For more information on the STL
file formats, see the File Format page about STL files.

Limitations
• An STL file does not contain any color or texture information. Therefore, the exported geometries

of some assets (mainly trees) may appear wrapped.
• The units in STL files are arbitrary and there is no scale information. RoadRunner uses meters as

the unit of measurement for the exported STL files.

 Export to STL

5-129

https://docs.fileformat.com/cad/stl/

Programmatic Scene Interfaces

• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Convert Scenes Between Formats Using gRPC API” on page 6-8
• “Export Multiple Scenes Using gRPC API” on page 6-14
• “Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19
• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28
• “Control RoadRunner Programmatically in Console Mode” on page 6-34
• “Export Multiple Scenes Using MATLAB” on page 6-38
• “Convert Scenes Between Formats Using MATLAB Functions” on page 6-41
• “Build Simple Roads Programatically Using RoadRunner HD Map ” on page 6-43

6

Control RoadRunner Programmatically Using gRPC API
RoadRunner provides an API that enables you to control the RoadRunner UI programmatically. For
example, using this API, you can:

• Create, load, and save RoadRunner scenes, scenarios, and projects.
• Import ASAM OpenDRIVE files into scenes.
• Export scenes and scenarios to one of the file formats that RoadRunner supports.

RoadRunner enables you to compile versions of the API in various programming languages and call
them in the language you choose. Alternatively, you can use a precompiled version of the API that
enables you to control RoadRunner from the command line.

How The RoadRunner API Works
The RoadRunner API is built using the open-source gRPC framework. This framework uses a client-
server architecture in which a client application remotely controls a server application using a set of
remote procedure call (RPC) methods. In RoadRunner:

• Your locally installed version of RoadRunner is the server application.
• The RoadRunner API provides the RPC methods used to remotely control RoadRunner.
• The programs you write to call the RPC methods are the client applications. The gRPC framework

is language-neutral and platform-neutral. You can write clients that call the RoadRunner API in
any platform and language that gRPC supports. For details on what languages and platforms
gRPC supports, see the gRPC Documentation.

This diagram shows a simplified layout of the API architecture. In this diagram, a Python client uses
the LoadScene method to load a scene in RoadRunner.

How The RoadRunner API Sends and Receives Data
The RPC methods of the RoadRunner API are defined in a gRPC service. Each time you call a method
that is part of a gRPC service, that method:

• Sends a request to a server.
• Receives a response back from the server.

6 Programmatic Scene Interfaces

6-2

https://grpc.io/docs/

This diagram shows this request-response format for a call of the LoadScene method. In the client,
the input to the method, LoadSceneRequest, is a request that the client sends the RoadRunner
application server. RoadRunner processes this request, loads a scene, and sends back a response,
LoadSceneResponse.

The data in these requests and responses is structured as messages that are defined using the
protocol buffer (protobuf) schema. The protobuf schema is a language-neutral format developed by
Google, and is optimized for fast and efficient data transfer. The RoadRunner server can send and
receive millions of protobuf messages from these API calls simultaneously while maintaining real-time
updates of RoadRunner.

Messages in the protobuf schema are defined in text files with a .proto extension. These messages
contain name-value fields that define:

• The names of the fields that you can specify in the messages.
• The data types of the fields. For example, you can specify fields as Boolean values, strings, or as

other protobuf messages.

Consider the schema for the LoadScene RPC method, as defined in the
roadrunner_service.proto file.

// Load scene
rpc LoadScene (LoadSceneRequest) returns (LoadSceneResponse) {}

The schema for the request message, LoadSceneRequest, and response message,
LoadSceneResponse, are defined in the roadrunner_service_messages.proto file.
LoadSceneRequest takes in one required input, file_path, which is a string that specifies the
path of the file to load.

message LoadSceneRequest
{
 // Scene file to load (required)
 string file_path = 1;
}

After RoadRunner processes the request (tries to load the scene), the RoadRunner API server sends
back an empty LoadSceneResponse message in response.

message LoadSceneResponse
{
}

Since the protobuf schema is language-neutral, the syntax used to call the methods and format your
message requests depends on the programming language you use to write your client applications.

 Control RoadRunner Programmatically Using gRPC API

6-3

Connect to RoadRunner API Server
To use the RoadRunner API, you must first establish a network connection with the RoadRunner API
server. This server is a part of your local RoadRunner installation and starts running when you open a
project.

To programmatically open RoadRunner and start the API server, call the AppRoadRunner executable
from your local RoadRunner installation. This executable contains command-line options that enable
you to specify:

• The project that RoadRunner opens to
• The IP network port that the RoadRunner API server runs on

This command-line code shows how to open RoadRunner from its default installation location on
Windows. RoadRunner opens to a project located at C:\RR\MyProject on IP network port 54321.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject --apiPort 54321

The Output pane of RoadRunner displays the port on which RoadRunner API server is running.

Use RoadRunner API from Command Line
RoadRunner provides a precompiled helper command, CmdRoadRunnerApi, that enables you to call
RoadRunner RPC methods from the command line. This helper command is located in the same folder
as the AppRoadRunner executable.

This code calls the LoadScene method to load the prebuilt FourWaySignal scene from the open
project.
CmdRoadRunnerApi "LoadScene(file_path='FourWaySignal')" --serverAddress=localhost:54321

6 Programmatic Scene Interfaces

6-4

Use RoadRunner API in Various Programming Languages
For additional flexibility in using the RoadRunner API, you can compile the API into a language
supported by gRPC, and then write client applications in that language to control RoadRunner
programmatically.

Compile RoadRunner API

To compile the RoadRunner API in your desired programming language, you must first copy the
protobuf files that define the API into a writable folder. These files are located in your local
RoadRunner installation. You can then use the protobuf compiler, along with the gRPC plugin for your
desired programming language, to compile language-specific versions, or bindings, of the
RoadRunner API. For example, this diagram shows the generation of Python and C++ bindings.

For details on compiling the protobuf files, see “Compile Protocol Buffers for RoadRunner gRPC API”
on page 6-19.

Create RoadRunner API Clients

The clients that you write to programmatically control RoadRunner typically contain code that
performs these steps:

1 Import gRPC code from the compiled bindings.
2 Establish a local network connection to the RoadRunner API server.
3 Use the imported gRPC code to create a RoadRunner API object. This object is called a stub.
4 Call the RPC methods from this stub to control RoadRunner over the local network.

This simple Python client shows an example of calling the LoadScene method.

 Control RoadRunner Programmatically Using gRPC API

6-5

import grpc
from mathworks.roadrunner import roadrunner_service_messages_pb2
from mathworks.roadrunner import roadrunner_service_pb2_grpc

with grpc.insecure_channel("localhost:54321") as channel:
 api = roadrunner_service_pb2_grpc.RoadRunnerServiceStub(channel)
 loadSceneRequest = roadrunner_service_messages_pb2.LoadSceneRequest()
 loadSceneRequest.file_path = "FourWaySignal"
 api.LoadScene(loadSceneRequest)

After importing the compiled gRPC Python bindings, this client establishes a connection over a gRPC
channel and creates a stub for the RoadRunner service API. The gRPC channel for the API uses
insecure channel credentials and has no encryption or authentication. Since RoadRunner typically
runs on a local machine and is not connecting to external networks, the security risk is low. Then, the
client calls LoadScene from the API stub, which loads the prebuilt FourWaySignal scene from the
currently open project.

You can have multiple clients calling RPC methods simultaneously, as long they are connected to
RoadRunner on the same network port. For example, in this diagram, both a Python client and C++
client are calling LoadScene over network port 54321.

See Also
AppRoadRunner

Related Examples
• “Convert Scenes Between Formats Using gRPC API” on page 6-8
• “Export Multiple Scenes Using gRPC API” on page 6-14
• “Generate Scenario Variations Using gRPC API” (RoadRunner Scenario)
• “Export Multiple Scenarios Using gRPC API” (RoadRunner Scenario)
• “Reuse Scenarios in Multiple Scenes Using gRPC API” (RoadRunner Scenario)

6 Programmatic Scene Interfaces

6-6

More About
• “Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19
• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28

 Control RoadRunner Programmatically Using gRPC API

6-7

Convert Scenes Between Formats Using gRPC API
This example shows how to import RoadRunner scenes from one file format and export those scenes
to a different format. In this example, you import ASAM OpenDRIVE files into scenes, save them to a
project, and export the scenes to Filmbox FBX files using command-line operations.

How the RoadRunner gRPC API Works
RoadRunner provides an API service for importing and exporting scenes and scenarios
programmatically. This API is built using the open-source, language-neutral gRPC framework, which
enables you to make remote procedure calls (RPCs) to the RoadRunner server to control the
application programmatically. For more background, see “Control RoadRunner Programmatically
Using gRPC API” on page 6-2.

You can compile the RoadRunner API service into any programming language supported by gRPC and
write clients to remotely control RoadRunner in that language. RoadRunner also provides a
precompiled version of this API as a command-line tool. This example uses this precompiled helper
command to perform these operations.

Note This example primarily uses Windows commands and file paths to call the API, but this API also
works on Linux.

Open RoadRunner and Start API Server
To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2022b\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2022b/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System” on page 2-2.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

6 Programmatic Scene Interfaces

6-8

The Output pane displays the port on which the RoadRunner API server is running.

Import and Export Single Scene
Preview the programmatic operations by importing one ASAM OpenDRIVE file into a RoadRunner
scene and exporting the scene to an FBX file. To perform these operations, use the
CmdRoadRunnerApi helper command. This helper command is located in the same folder as the
AppRoadRunner executable file.

Import ASAM OpenDRIVE File

Import an ASAM OpenDRIVE file of the format .xodr into the current scene. To use your own file,
update file_path to the path to your .xodr file and update serverAddress to use the apiPort
value you specified when opening RoadRunner. If you used the default port, omit this option.
CmdRoadRunnerApi "Import(file_path='C:\ODR\MyOpenDRIVEFile.xodr')" --serverAddress localhost:54321

If you do not have an ASAM OpenDRIVE file, you can download a sample file from the ASAM
OpenDRIVE website.

This example shows an ASAM OpenDRIVE file generated by loading one of the prebuilt scenes from
the current project, exporting it to ASAM OpenDRIVE, and then importing the exported file into a
new scene. The code to generate this file is shown here:

CmdRoadRunnerApi "LoadScene(file_path='FourWaySignal')" --serverAddress localhost:54321
CmdRoadRunnerApi "Export(file_path='FourWaySignal.xodr' format_name='opendrive')" --serverAddress localhost:54321
CmdRoadRunnerApi "NewScene()" --serverAddress localhost:54321
CmdRoadRunnerApi "Import(file_path='C:\RR\MyProject\Exports\FourWaySignal.xodr')" --serverAddress localhost:54321

 Convert Scenes Between Formats Using gRPC API

6-9

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/

Export to FBX

Export the scene created from the imported ASAM OpenDRIVE file to the Filmbox FBX file format,
and specify the option to split meshes by their segmentation type.

• For the exported file name, specify the same name as the current scene, but with the
extension .fbx. By default, RoadRunner exports the scene to the Exports folder of the open
project.

• For the serverAddress option, replace the example port number with the apiPort value you
specified when opening RoadRunner.

CmdRoadRunnerApi "Export(file_path='FourWaySignal.fbx' format_name='filmbox' ^
filmbox_settings.split_by_segmentation.value='true')" --serverAddress localhost:54321

Navigate to the Exports folder. List the folder contents and verify that the folder contains the .fbx
file and associated texture image files.

cd "C:\RR\MyProject\Exports"
dir

Asphalt1_Diff.png
Asphalt1_Norm.png
Asphalt1_Spec.png
Concrete1_Diff.png
Concrete1_Norm.png
Concrete1_Spec.png
FourWaySignal.fbx
...

Import and Export Multiple Scenes
To import all ASAM OpenDRIVE files in a folder and export them to the FBX format, you can write a
script that calls the CmdRoadRunnerApi command in a loop.

Copy the script for your platform to a file named bulk_opendrive_import_fbx_export.bat
(Windows) or bulk_opendrive_import_fbx_export.bash (Linux) and modify these variables:

• RRPATH — Update to the bin/platform folder path of your local RoadRunner installation.
• PROJECT — Update to the path of your RoadRunner project.

6 Programmatic Scene Interfaces

6-10

• PORT — Update to the IP network port that you want to connect to.
• OPENDRIVEFOLDER — Update to the folder path that contains the ASAM OpenDRIVE files you

want to import.

bulk_opendrive_import_fbx_export.bat (Windows)
@echo off
SetLocal EnableDelayedExpansion
REM Bulk-import ASAM OpenDRIVE files into RoadRunner scenes and export scenes to FBX.

set RRPATH=C:\Program Files\RoadRunner R2022b\bin\win64&
set PROJECT=C:\RR\MyProject&
set PORT=54321&
set OPENDRIVEFOLDER="C:\RR\ODR"&

REM Open RoadRunner.
cd %RRPATH%
Start "" AppRoadRunner --projectPath="%PROJECT%" --apiPort=%PORT%
timeout /t 1 /nobreak>nul& REM Wait for API server to start.

REM Load OpenDRIVE files into new scene. Export FBX files to subfolders under "Exports" folder of project.
for %%F in (%OPENDRIVEFOLDER%*.xodr) do (
 set FILENAME=%%~nF
 set SCENENAME=!FILENAME!_OpenDRIVE
 set EXPORTPATH=!PROJECT!\Exports\!FILENAME!\!FILENAME!.fbx
 CmdRoadRunnerApi "NewScene()" --serverAddress=localhost:!PORT!
 CmdRoadRunnerApi "Import(file_path='%%F')" --serverAddress localhost:!PORT!
 CmdRoadRunnerApi "Export(file_path='!EXPORTPATH!' format_name='filmbox')" --serverAddress localhost:!PORT!
 CmdRoadRunnerApi "SaveScene(file_path='!SCENENAME!')" --serverAddress=localhost:!PORT!
)

REM Exit RoadRunner
CmdRoadRunnerApi "Exit()" --serverAddress=localhost:!PORT!

bulk_opendrive_import_fbx_export.bash (Linux)
#!/bin/bash
Bulk-import ASAM OpenDRIVE files into RoadRunner scenes and export scenes to FBX.

RRPATH="/usr/local/RoadRunner_R2022b/bin/glnxa64"
PROJECT="/local/RR/MyProject"
PORT=54321
OPENDRIVEFOLDER="/local/RR/ODR"

Open RoadRunner
cd "$RRPATH"
./AppRoadRunner --projectPath="$PROJECT" --apiPort="$PORT" &

Load OpenDRIVE files into new scene. Export FBX files to subfolders under "Exports" folder of project.
for OPENDRIVEFILE in $OPENDRIVEFOLDER/*.xodr
do
 FILENAME=$(basename $OPENDRIVEFILE .xodr)
 SCENENAME=$FILENAME"_OpenDRIVE"
 EXPORTPATH=$PROJECT"/Exports/"$FILENAME"/"$FILENAME".fbx"
 ./CmdRoadRunnerApi "NewScene()" --serverAddress=localhost:$PORT
 ./CmdRoadRunnerApi "Import(file_path='$OPENDRIVEFILE')" --serverAddress localhost:$PORT
 ./CmdRoadRunnerApi "Export(file_path='$EXPORTPATH' format_name='filmbox')" --serverAddress localhost:$PORT
 ./CmdRoadRunnerApi "SaveScene(file_path='$SCENENAME')" --serverAddress=localhost:$PORT
done

Exit RoadRunner
./CmdRoadRunnerApi "Exit()" --serverAddress=localhost:$PORT

This script performs these actions:

1 Opens RoadRunner to a project and starts the RoadRunner API server.
2 Loads each ASAM OpenDRIVE file contained in the folder into a new scene.

 Convert Scenes Between Formats Using gRPC API

6-11

3 Exports each scene to the Filmbox FBX format using the default settings. For each exported
scene, RoadRunner exports the FBX file and associated texture image files to subfolders under
the Exports folder of the project.

4 Saves the scene to the Scenes folder. Each scene has the same name as the ASAM OpenDRIVE
file but with the suffix _OpenDRIVE and the extension .rrscene instead of .xodr.

5 Exits RoadRunner and shuts down the RoadRunner server.

Call this script from the command line. For example, if you used the .bat script, then call this
command from a Windows command prompt.

bulk_opendrive_import_fbx_export

To verify that the script has exported the scenes, navigate to the Exports folder of the specified
project and list the folder contents. For example, if you specified a project at path "C:\RR
\MyProject", run these commands.

cd "C:\RR\MyProject\Exports"
dir

If your project included only the default scenes, then the Exports folder contains a subfolder for
each scene.

FourWaySignal
FourWayStop
SanAntonio
T_Intersection

Open one of the subfolders and verify that the folder contains the exported Filmbox file and
associated texture image files.

cd FourWaySignal
dir

Asphalt1_Diff.png
Asphalt1_Norm.png
Asphalt1_Spec.png
Concrete1_Diff.png
Concrete1_Norm.png
Concrete1_Spec.png
FourWaySignal.fbx
...

Navigate to the Scenes folder of the project and list the contents to verify that RoadRunner saved
ASAM OpenDRIVE versions of the scenes.

cd ..\..\Scenes
dir

FourWaySignal.rrscene
FourWaySignal_OpenDRIVE.rrscene
FourWayStop.rrscene
FourWayStop_OpenDRIVE.rrscene
...

6 Programmatic Scene Interfaces

6-12

Extend RoadRunner Import and Export Options
To customize the script further, you can specify nondefault import and export settings or specify other
file formats. For more details on supported formats, see the Import and Export RPC methods.

For additional flexibility in importing and exporting scenes, consider compiling the protocol buffer
(protobuf) files that define the API into your desired programming language. For more details, see
“Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19. You can then write client
applications in those languages. For sample clients, see these examples:

• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28

See Also
AppRoadRunner | Import | Export | import_settings.proto | export_settings.proto

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Export Multiple Scenes Using gRPC API” on page 6-14

See Also

 Convert Scenes Between Formats Using gRPC API

6-13

Export Multiple Scenes Using gRPC API
This example shows how to bulk-export scenes in a RoadRunner project to one of the file formats
supported by RoadRunner. In this example, you export scenes to the ASAM OpenDRIVE file format
using command-line operations.

How the RoadRunner gRPC API Works
RoadRunner provides an API service for importing and exporting scenes and scenarios
programmatically. This API is built using the open-source, language-neutral gRPC framework, which
enables you to make remote procedure calls (RPCs) to the RoadRunner server to control the
application programmatically. For more background, see “Control RoadRunner Programmatically
Using gRPC API” on page 6-2.

You can compile the RoadRunner API service into any programming language supported by gRPC and
write clients to remotely control RoadRunner in that language. RoadRunner also provides a
precompiled version of this API as a command-line tool. This example uses this precompiled helper
command to perform these operations.

Note This example primarily uses Windows commands and file paths to call the API, but this API also
works on Linux.

Open RoadRunner and Start API Server
To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2022b\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2022b/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System” on page 2-2.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

6 Programmatic Scene Interfaces

6-14

The Output pane displays the port on which the RoadRunner API server is running.

Export Single Scene
Preview the programmatic operations by exporting one scene from the current project to ASAM
OpenDRIVE. To perform these operations, you use the CmdRoadRunnerApi helper command. This
helper command is located in the same folder as the AppRoadRunner executable file.

Load the FourWaySignal scene by using the LoadScene RPC method. This scene is included by
default in the Scenes folder of RoadRunner projects. In the serverAddress option, replace the port
number with the apiPort value you specified when opening RoadRunner. If you used the default
port, omit this option.

CmdRoadRunnerApi "LoadScene(file_path='FourWaySignal')" --serverAddress=localhost:54321

Export the scene to the ASAM OpenDRIVE version 1.6 format by using the Export RPC method.

• For the exported file name, specify the same name as the scene, but with the extension .xodr. By
default, RoadRunner exports the scene to the Exports folder of the opened project.

• In the serverAddress option, replace the port number with the apiPort value you specified
when opening RoadRunner.

 Export Multiple Scenes Using gRPC API

6-15

CmdRoadRunnerApi "Export(file_path='FourWaySignal.xodr' format_name='opendrive' ^
open_drive_settings.open_drive_version='1.6')" --serverAddress=localhost:54321

Navigate to the Exports folder and open the exported ASAM OpenDRIVE file. Verify that the
<header> tag contains the specified file version.

cd "C:\RR\MyProject\Exports"
FourWaySignal.xodr

<OpenDRIVE>
 <header revMajor="1" revMinor="6" ...>
 ...

Export Multiple Scenes
To export all scenes in the current project, you can write a script that calls the CmdRoadRunnerApi
command in a loop.

Copy the script for your platform to a file named bulk_opendrive_export.bat (Windows) or
bulk_opendrive_export.bash (Linux) and modify these variables:

• RRPATH — Update to the bin/platform folder path of your local RoadRunner installation.
• PROJECT — Update to the path of your RoadRunner project.
• PORT — Update to the IP network port that you want to connect to.

bulk_opendrive_export.bat (Windows)
@echo off
SetLocal EnableDelayedExpansion
REM Export all RoadRunner scenes in project to ASAM OpenDRIVE.

set RRPATH=C:\Program Files\RoadRunner R2022b\bin\win64&
set PROJECT=C:\RR\MyProject&
set PORT=54321&

REM Open RoadRunner.
cd %RRPATH%
Start "" AppRoadRunner --projectPath="%PROJECT%" --apiPort=%PORT%
timeout /t 1 /nobreak>nul& REM Wait for API server to start.

REM Load scenes from "Scenes" folder and export to "Exports" folder.
for %%F in (%PROJECT%\Scenes*.rrscene) do (
 set SCENENAME=%%~nF
 set EXPORTPATH=!PROJECT!\Exports\!SCENENAME!.xodr
 CmdRoadRunnerApi "LoadScene(file_path='%%F')" --serverAddress=localhost:!PORT!
 CmdRoadRunnerApi "Export(file_path='!EXPORTPATH!' format_name='OpenDRIVE')" --serverAddress=localhost:!PORT!
)

REM Exit RoadRunner
CmdRoadRunnerApi "Exit()" --serverAddress=localhost:!PORT!

6 Programmatic Scene Interfaces

6-16

bulk_opendrive_export.bash (Linux)
#!/bin/bash
Export all RoadRunner scenes in project to ASAM OpenDRIVE.

RRPATH="/usr/local/RoadRunner_R2022b/bin/glnxa64"
PROJECT="/local/RR/MyProject"
PORT=54321

Open RoadRunner.
cd "$RRPATH"
./AppRoadRunner --projectPath="$PROJECT" --apiPort="$PORT" &

Load scenes from "Scenes" folder and export to "Exports" folder.
for SCENE in $PROJECT/Scenes/*.rrscene
do
 SCENENAME=$(basename $SCENE .rrscene)
 EXPORTPATH=$PROJECT/Exports/$SCENENAME.xodr
 ./CmdRoadRunnerApi "LoadScene(file_path='$SCENE')" --serverAddress=localhost:$PORT
 ./CmdRoadRunnerApi "Export(file_path='$EXPORTPATH' format_name='OpenDRIVE')" --serverAddress=localhost:$PORT
done

Exit RoadRunner.
./CmdRoadRunnerApi "Exit()" --serverAddress=localhost:$PORT

This script performs these actions:

1 Opens RoadRunner to a project and starts the RoadRunner API server.
2 Loads each scene from the Scenes folder of the project.
3 Exports each scene to ASAM OpenDRIVE using the default settings. RoadRunner exports the file

to the Exports folder of the project and gives it the same name as the scene, but with the
extension .xodr.

4 Exits RoadRunner and shuts down the RoadRunner server.

Call this script from the command line. For example, if you used the .bat script, then call this
command from a Windows command prompt.

bulk_opendrive_export

To verify that the script has exported the scenes, navigate to the Exports folder of the specified
project and list the contents of the folder. For example, if you specified a project at path "C:\RR
\MyProject", run these commands.

cd "C:\RR\MyProject\Exports"
dir

If your project included only the default scenes, then your folder contains only the ASAM OpenDRIVE
files and corresponding GeoJSON files.

FourWaySignal.xodr
FourWaySignal.geojson
FourWayStop.xodr
FourWayStop.geojson
...

Extend RoadRunner Export Options
To customize the script further, you can specify nondefault export settings or specify other file
formats. For more details on supported formats, see the Export RPC method.

 Export Multiple Scenes Using gRPC API

6-17

For additional flexibility in exporting scenes, consider compiling the protocol buffer (protobuf) files
that define the API into your desired programming language. For more details, see “Compile Protocol
Buffers for RoadRunner gRPC API” on page 6-19. You can then write client applications in those
languages. For sample clients, see these examples:

• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28

See Also
AppRoadRunner | Import | Export | import_settings.proto | export_settings.proto

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Convert Scenes Between Formats Using gRPC API” on page 6-8

6 Programmatic Scene Interfaces

6-18

Compile Protocol Buffers for RoadRunner gRPC API
The RoadRunner API is built using an open-source, language-neutral framework called gRPC. With
this framework, you can compile the protocol buffer (protobuf) schema files that define the API into
one of several programming languages supported by gRPC and then use the compiled API in that
language.

To compile the protobuf files, follow these steps:

1 Install the gRPC library and protobuf compiler, as well as any associated plugin for your desired
programming language.

2 Copy the API protobuf files from your RoadRunner installation to a local, writable folder.
3 Use the compiler and gRPC plugin to generate the language-specific versions, or bindings, of the

API, which you can call from the clients you write.

This diagram shows bindings generated for Python and C++, but you can generate bindings for any
language that gRPC supports.

Verify Minimum Software Requirements
Before compiling, verify in the gRPC Documentation that gRPC supports:

• The programming language to which you want to compile
• The minimum version you are using for your programming language
• The OS you are using

Install gRPC and Protobuf Compiler
To compile the RoadRunner API, install this software:

• The gRPC runtime library for your language (minimum version 1.23.1). Follow the instructions on
https://github.com/grpc/grpc/.

 Compile Protocol Buffers for RoadRunner gRPC API

6-19

https://grpc.io/docs/
https://github.com/grpc/grpc/

• The protocol compiler, protoc (minimum version 3.8.0), and the protobuf runtime for your
language, which installs the language-specific plugin on protoc. Follow the instructions on
https://github.com/protocolbuffers/protobuf.

For additional installation help, see the quick start guides for your language in the gRPC
Documentation.

Copy Protobuf Files to Writable Folder
Your local installation of RoadRunner contains the protobuf files that you need to compile in this
folder:

RRInstallFolder/bin/platform/Proto/

• RRInstallFolder is your local RoadRunner installation folder
• platform is the folder name for your OS platform.

This table shows the default protobuf location by platform.

Platform Default Protobuf Location
Windows C:\Program Files\RoadRunner R2022b\bin

\win64\Proto
Linux Ubuntu /usr/local/RoadRunner_R2022b/bin/

glnxa64/Proto

Inside the Proto folder, the top-level mathworks folder contains the hierarchy of protobuf files. Copy
this folder into the same folder that contains the clients that you intend to write. For example, this
figure shows a sample folder containing the mathworks folder and a Python client named
bulk_opendrive_export.py.

Select Protobuf Files to Compile
The protobuf files that you need to compile depend on the API that you intend to use. This table
shows which files to compile and their locations within the mathworks root protobuf folder.

Note You installation might not include all protobuf files shown here. The exact protobuf files
included in your local RoadRunner installation depend on the RoadRunner products for which you are
licensed.

API Required Products Protobuf Files to
Compile

Protobuf File
Locations

RoadRunner service for
working with scenes
and scenarios. For more
details, see:

RoadRunner

RoadRunner Scenario
(for scenario workflows)

roadrunner_service
.proto

mathworks/
roadrunner

roadrunner_service
_messages.proto

6 Programmatic Scene Interfaces

6-20

https://github.com/protocolbuffers/protobuf
https://grpc.io/docs/
https://grpc.io/docs/

API Required Products Protobuf Files to
Compile

Protobuf File
Locations

• “gRPC API for
Scenes and HD
Maps”

• “gRPC API for
Scenarios”
(RoadRunner
Scenario)

import_settings.pr
oto
export_settings.pr
oto
geometry.proto mathworks/

scenario/common

HD map interface for
importing custom scene
data. For more details,
see “Build Scenes from
Custom Data Using
RoadRunner HD Map”.

RoadRunner

RoadRunner Scene
Builder

hd_map_header.prot
o

mathworks/
scenario/scene/hd

hd_map.proto
hd_lanes.proto
hd_lane_markings.p
roto
hd_junctions.proto
common_attributes.
proto
geometry.proto mathworks/

scenario/common

Compile Protobuf Files
To compile the protobuf files, follow the tutorials for your programming language in the Google
protocol buffer documentation: https://developers.google.com/protocol-buffers

In the typical process, you run a protoc command on the .proto files that you want to compile. The
protoc compiler then generates language-specific bindings based off of those .proto files.

For example, this code shows how to compile protobuf files in Python, where:

• PATH_TO_PYTHON_CLIENT is the folder path in which you plan to store your Python client.
• pathToProtos is the path to the root protobuf folder, mathworks, which is relative to your client

folder.
• grpc.tools.protoc is the compile command from an installed protoc compiler

 Compile Protocol Buffers for RoadRunner gRPC API

6-21

https://developers.google.com/protocol-buffers

import os
import subprocess

pathToClient = r"PATH_TO_PYTHON_CLIENT"
pathToProtos = pathToClient

Get list of all protobuf files
protoFiles = list()
for root, dirs, files in os.walk(pathToProtos):
 for file in files:
 if file.endswith(".proto"):
 protoFiles.append(os.path.join(root,file))

Generate protobuf compiler command
command = ('python -m grpc.tools.protoc --proto_path="' + pathToProtos + \
'" --python_out="' + pathToClient + '" --grpc_python_out="' + pathToClient + '"')

for file in protoFiles:
 command += ' "' + file + '"'

print("Compiling protobuf files...")
print("Executing command:\n\n" + command + "\n")

out = subprocess.run(command, check=True)

print("Successfully compiled protobuf files. Generated Python files are located in '"
+ pathToClient + "'")

If you need additional help compiling the protocol buffer files into your desired programming
language, Contact Support.

Write Clients
The compiled protobuf files, or bindings, contain the language-specific code needed to use the API. In
the clients you write, you import these bindings into your code. To learn how to write clients for a few
of the languages that gRPC supports, see these examples:

• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28

See Also

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Build Scenes from Custom Data Using RoadRunner HD Map”

6 Programmatic Scene Interfaces

6-22

https://www.mathworks.com/support/contact_us.html

Create gRPC Python Client for Controlling RoadRunner
Programmatically

The RoadRunner API enables you to write client applications in multiple programming languages to
control RoadRunner programmatically. This example shows how to write a simple Python client that
exports all scenes in a project to ASAM OpenDRIVE.

Prerequisites
Before beginning this example, make sure that you meet these prerequisites:

• You are familiar with the language-neutral gRPC framework that the RoadRunner API is built on.
For more details, see “Control RoadRunner Programmatically Using gRPC API” on page 6-2.

• You have compiled the protocol buffer (protobuf) schema files that define the RoadRunner API you
are using into Python. For more details, see “Compile Protocol Buffers for RoadRunner gRPC API”
on page 6-19.

• You have experience writing Python code and have Python installed in your local environment.

Create Client File
Create a Python file named bulk_opendrive_export.py. Save this file in the same folder as the
Python bindings that you generated by compiling the RoadRunner API protocol buffer (protobuf) files.

This figure shows a sample folder structure, where mathworks is the root folder of the compiled
bindings.

Write Client
Write the Python code for the client application by copying this code into the
bulk_opendrive_export.py file:

 Create gRPC Python Client for Controlling RoadRunner Programmatically

6-23

Python Client Code to Copy
"""
Copyright 2021 The MathWorks, Inc.
An example client for exporting RoadRunner scenes to ASAM OpenDRIVE files in bulk.
"""

import grpc
from mathworks.roadrunner import roadrunner_service_messages_pb2
from mathworks.roadrunner import roadrunner_service_pb2_grpc

import os
import sys

def bulk_opendrive_export(project,port,export_folder="OpenDRIVE"):
 """
 Export all RoadRunner scenes in a project to ASAM OpenDRIVE.

 Required arguments:
 project -- Path to RoadRunner project (string)
 port -- Network port on which RoadRunner service is running (string)

 Keyword arguments:
 export_folder -- Export folder path relative to "Exports" folder (string)
 """

 # Connect to RoadRunner API server
 with grpc.insecure_channel("localhost:" + port) as channel:
 api = roadrunner_service_pb2_grpc.RoadRunnerServiceStub(channel)

 # Get all scenes in project
 scenes = [scene for scene in os.listdir(project + "\Scenes") \
 if scene.endswith(".rrscene")]

 # Load project
 load_project_request = roadrunner_service_messages_pb2.LoadProjectRequest()
 load_project_request.folder_path = project
 api.LoadProject(load_project_request)

 # Export scenes to ASAM OpenDRIVE
 for scene in scenes:
 export_request = roadrunner_service_messages_pb2.ExportRequest()
 file_name = scene.replace(".rrscene",".xodr")
 export_request.file_path = export_folder + "\\" + file_name
 export_request.format_name = "opendrive"
 api.Export(export_request)
 print("Exported scene " + scene + " to " + \
 project + "\\Exports\\" + export_folder)

 # Exit RoadRunner
 exit_request = roadrunner_service_messages_pb2.ExitRequest()
 api.Exit(exit_request)

if __name__ == "__main__":
 bulk_opendrive_export(sys.argv[1],sys.argv[2],*sys.argv[3:])

This client defines a Python function that exports all scenes in a specified RoadRunner project to the
ASAM OpenDRIVE file format. The table describes the code in this client application.

6 Programmatic Scene Interfaces

6-24

Code and Description
Import the gRPC Python library. If you previously compiled the protobuf files to Python, then you
have already installed this library. If you do not have the library installed, see “Install gRPC and
Protobuf Compiler” on page 6-19.
import grpc

Import the generated Python bindings for the RoadRunner API. This sample client uses the
RoadRunner service API, which enables you to manage projects, scenes, and scenarios.
from mathworks.roadrunner import roadrunner_service_messages_pb2
from mathworks.roadrunner import roadrunner_service_pb2_grpc

The imported Python bindings are compiled versions of these protobuf files:

• roadrunner_service.proto
• roadrunner_service_messages.proto

The client imports the Python bindings from the mathworks folder that is in the same folder as your
client.
import os
import sys

Import additional Python libraries required for your client. This client uses the os library to perform
file operations and the sys library to accept command-line arguments.
def bulk_opendrive_export(project,port,export_folder="OpenDRIVE"):
 """
 Export all RoadRunner scenes in a project to ASAM OpenDRIVE.

 Required arguments:
 project -- Path to RoadRunner project (string)
 port -- Network port on which RoadRunner service is running (string)

 Keyword arguments:
 export_folder -- Export folder path relative to "Exports" folder (string)
 """

Define the client in a function or script. This client defines a function, bulk_opendrive_export,
that exports all scenes in a specified RoadRunner project to ASAM OpenDRIVE. The function
connects to RoadRunner at the specified IP network port, port.

By default, the function exports scenes to RoadRunnerProject/Exports/OpenDRIVE, where
RoadRunnerProject is the project path specified by project. The export_folder keyword
argument enables you to change the folder containing the exported files relative to
RoadRunnerProject/Exports.

 # Connect to RoadRunner API server
 with grpc.insecure_channel("localhost:" + port) as channel:

Establish a local connection to the RoadRunner API server over the gRPC channel.

The gRPC channel for the API server uses insecure channel credentials and has no encryption or
authentication. Since RoadRunner is running on a local machine and not connecting to external
networks, the security risk is low.

This client connects to the RoadRunner API server using the IP port number that is specified as an
input argument to the function.

 Create gRPC Python Client for Controlling RoadRunner Programmatically

6-25

Code and Description
 api = roadrunner_service_pb2_grpc.RoadRunnerServiceStub(channel)

Create an object for the RoadRunner service API. This object is called a stub. By using remote
procedure call (RPC) methods of this stub, you can remotely control RoadRunner from your client.
 # Get all scenes in project
 scenes = [scene for scene in os.listdir(project + "\Scenes") \
 if scene.endswith(".rrscene")]

 # Load project
 load_project_request = roadrunner_service_messages_pb2.LoadProjectRequest()
 load_project_request.folder_path = project
 api.LoadProject(load_project_request)

 # Export scenes to ASAM OpenDRIVE
 for scene in scenes:
 export_request = roadrunner_service_messages_pb2.ExportRequest()
 file_name = scene.replace(".rrscene",".xodr")
 export_request.file_path = export_folder + "\\" + file_name
 export_request.format_name = "opendrive"
 api.Export(export_request)
 print("Exported scene " + scene + " to " + \
 project + "\\Exports\\" + export_folder)

 # Exit RoadRunner
 exit_request = roadrunner_service_messages_pb2.ExitRequest()
 api.Exit(exit_request)

Call RPC methods from the API stub. These methods send protobuf-encoded message requests to the
RoadRunner API server. RoadRunner then updates accordingly and returns an empty message in
response to indicate that it has processed the request.

After collecting a list of all scenes in the specified project, this client performs these actions:

1 Loads the specified project by using the LoadProject method.
2 Exports each scene to the export folder by using the Export method.
3 Exits RoadRunner and shuts down the API server by using the Exit method.

if __name__ == "__main__":
 bulk_opendrive_export(sys.argv[1],sys.argv[2],*sys.argv[3:])

Enable the function defined in the client to be called with command-line arguments.

Call Client
After creating the client, you can then open RoadRunner and call the client from the command line.

Use AppRoadRunner to open RoadRunner to a project. For example, this code shows how to open
RoadRunner from its default installation location on Windows. RoadRunner opens to a project located
at C:\RR\MyProject on IP network port 54321. RoadRunner opens to a new scene in the project.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject --apiPort 54321

Navigate to the location of your client and call the bulk_opendrive_export function defined in the
client. Specify the name of the project path and the API port that you used to open RoadRunner. By
default, this client exports the ASAM OpenDRIVE files to a folder named Exports/OpenDRIVE
within the project.

6 Programmatic Scene Interfaces

6-26

cd "Path\To\Client"
python bulk_opendrive_export.py C:\RR\MyProject 54321

The client opens RoadRunner, exports the scenes, and prints statements to confirm the export. For
example:

Exported scene FourWaySignal to C:\RR\MyProject\Exports\OpenDRIVE.

Navigate to the folder containing the exported files to confirm that they have exported correctly.

cd "C:\RR\MyProject\Exports\OpenDRIVE"
ls

FourWaySignal.xodr
...

See Also
AppRoadRunner

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically” on page 6-28

 Create gRPC Python Client for Controlling RoadRunner Programmatically

6-27

Create gRPC C++ Client for Controlling RoadRunner
Programmatically

The RoadRunner API enables you to write client applications in multiple programming languages to
control RoadRunner programmatically. This example shows how to write a simple C++ client that
exports all scenes in a project to ASAM OpenDRIVE.

Prerequisites
Before beginning this example, make sure that you meet these prerequisites:

• You are familiar with the language-neutral gRPC framework that the RoadRunner API is built on.
For more details, see “Control RoadRunner Programmatically Using gRPC API” on page 6-2.

• You have compiled the protocol buffer (protobuf) schema files that define the RoadRunner API you
are using into C++. For more details, see “Compile Protocol Buffers for RoadRunner gRPC API”
on page 6-19.

• You have experience writing C++ code and have C++ installed in your local environment.

Create Client File
Create a C++ file named BulkOpenDRIVEExport.cc. Save this file in the same folder as the C++
bindings that you generated by compiling the RoadRunner API protocol buffer (protobuf) files.

This figure shows a sample folder structure, where mathworks is the root folder of the compiled
bindings.

Write Client
Write the C++ code for the client application by copying this code into the
BulkOpenDRIVEExport.cc file:

6 Programmatic Scene Interfaces

6-28

C++ Client Code to Copy
/*
Copyright 2021 The MathWorks, Inc.
An example client for exporting RoadRunner scenes to ASAM OpenDRIVE files in bulk.
 */

#include "mathworks/roadrunner/roadrunner_service.grpc.pb.h"

#include <filesystem>
#include <grpcpp/grpcpp.h>
#include <iostream>
#include <string>
#include <vector>

using grpc::ClientContext;
using grpc::Status;

using namespace std;
using namespace mathworks::roadrunner;

// Call Signature: ./BulkOpenDRIVEExport C:/RR/MyProject 54321 OpenDRIVE"
int main(int argc, char **argv) {

 // Connect to RoadRunner API server
 unique_ptr<RoadRunnerService::Stub> api(
 RoadRunnerService::NewStub(grpc::CreateChannel(
 "localhost:" + string(argv[2]), grpc::InsecureChannelCredentials())));

 // Load Project
 string projectPath = argv[1];
 LoadProjectRequest loadProjectRequest;
 loadProjectRequest.set_folder_path(projectPath);
 LoadProjectResponse loadProjectResponse;
 ClientContext context;
 Status status = api->LoadProject(&context, loadProjectRequest, &loadProjectResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 return -1;
 }

 // Get all scenes in project and export scenes to OpenDRIVE
 string exportFolder = argv[3];
 ExportRequest exportRequest;
 exportRequest.set_format_name("opendrive");
 for (const auto &file :
 filesystem::directory_iterator(projectPath + "/Scenes")) {
 const string fileName = filesystem::path(file.path()).filename().string();
 size_t extPos = fileName.find(".rrscene");
 if (extPos != string::npos) {
 exportRequest.set_file_path(exportFolder + "/" + fileName.substr(0,extPos) + ".xodr");
 ExportResponse exportResponse;
 ClientContext context;
 Status status = api->Export(&context, exportRequest, &exportResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 }
 else {
 cout << "Exported scene " + fileName + " to " + projectPath + "/Exports/" + exportFolder << endl;
 }
 }
 }

 // Exit RoadRunner
 ExitRequest exitRequest;
 ExitResponse exitResponse;
 ClientContext context;
 Status status = api->Exit(&context, exitRequest, &exitResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 return -1;
 }

 Create gRPC C++ Client for Controlling RoadRunner Programmatically

6-29

 return 0;
}

This client defines a C++ function that exports all scenes in a specified RoadRunner project to the
ASAM OpenDRIVE file format. The table describes the code in this client application.

6 Programmatic Scene Interfaces

6-30

Code and Description
Include the libraries that are required to call the client. These libraries include:

• The generated C++ bindings for the RoadRunner API. This sample client uses the RoadRunner
service API, which enables you to manage projects, scenes, and scenarios. The imported C++
binding is a compiled version of the roadrunner_service.proto file. The client imports these
bindings from the mathworks folder that is in the same folder as your client.

• The gRPC C++ library (grpcpp/grpcpp.h). If you previously compiled the protobuf files to C+
+, then you have already installed this library. If you do not have the library installed, see “Install
gRPC and Protobuf Compiler” on page 6-19.

• Additional C++ libraries required for your client. This client uses the standard C++ libraries
<filesystem>, <iostream>, <string>, and <vector>.

#include "mathworks/roadrunner/roadrunner_service.grpc.pb.h"

#include <filesystem>
#include <grpcpp/grpcpp.h>
#include <iostream>
#include <string>
#include <vector>

using grpc::ClientContext;
using grpc::Status;

using namespace std;
using namespace mathworks::roadrunner;

Define the client in a function or script. This client defines a function that exports all scenes in a
RoadRunner project to ASAM OpenDRIVE. The function accepts three required command-line
arguments.

1 The project from which you want to export scenes.
2 The IP network port used to establish a connection with the RoadRunner API server.
3 The folder to export scenes to, relative to the Exports folder of the specified project.

// Call Signature: ./BulkOpenDRIVEExport C:/RR/MyProject 54321 OpenDRIVE"
int main(int argc, char **argv) {

Create a pointer object for the RoadRunner service API. This object is called a stub. By using the
remote procedure call (RPC) methods of this stub, you can remotely control RoadRunner from your
client.

Use this stub to establish a local connection to your RoadRunner API server over the gRPC channel.

The gRPC channel for the API server uses insecure channel credentials and has no encryption or
authentication. Since RoadRunner is running on a local machine and not connecting to external
networks, the security risk is low.

This client connects to the RoadRunner API server using the IP port number that is specified as an
input argument to the function.

 // Connect to RoadRunner API server
 unique_ptr<RoadRunnerService::Stub> api(
 RoadRunnerService::NewStub(grpc::CreateChannel(
 "localhost:" + string(argv[2]), grpc::InsecureChannelCredentials())));

 Create gRPC C++ Client for Controlling RoadRunner Programmatically

6-31

Code and Description
Call RPC methods from the API stub. These methods send protobuf-encoded message requests to the
RoadRunner API server. RoadRunner then updates accordingly and returns an empty message in
response to indicate that it has processed the request.

The client performs these actions:

1 Loads the specified project by using the LoadProject method.
2 Exports each scene in the project to the export folder by using the Export method.
3 Exits RoadRunner and shuts down the API server by using the Exit method.

 // Load Project
 string projectPath = argv[1];
 LoadProjectRequest loadProjectRequest;
 loadProjectRequest.set_folder_path(projectPath);
 LoadProjectResponse loadProjectResponse;
 ClientContext context;
 Status status = api->LoadProject(&context, loadProjectRequest, &loadProjectResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 return -1;
 }

 // Get all scenes in project and export scenes to OpenDRIVE
 string exportFolder = argv[3];
 ExportRequest exportRequest;
 exportRequest.set_format_name("opendrive");
 for (const auto &file :
 filesystem::directory_iterator(projectPath + "/Scenes")) {
 const string fileName = filesystem::path(file.path()).filename().string();
 size_t extPos = fileName.find(".rrscene");
 if (extPos != string::npos) {
 exportRequest.set_file_path(exportFolder + "/" + fileName.substr(0,extPos) + ".xodr");
 ExportResponse exportResponse;
 ClientContext context;
 Status status = api->Export(&context, exportRequest, &exportResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 }
 else {
 cout << "Exported scene " + fileName + " to " + projectPath + "/Exports/" + exportFolder << endl;
 }
 }
 }

 // Exit RoadRunner
 ExitRequest exitRequest;
 ExitResponse exitResponse;
 ClientContext context;
 Status status = api->Exit(&context, exitRequest, &exitResponse);
 if (!status.ok()) {
 cout << status.error_code() << ": " << status.error_message() << endl;
 return -1;
 }

 return 0;
}

Call Client
After creating the client, you can then open RoadRunner and call the client from the command line.

6 Programmatic Scene Interfaces

6-32

Use AppRoadRunner to open RoadRunner to a project. For example, this code shows how to open
RoadRunner from its default installation location on Windows. RoadRunner opens to a project located
at C:\RR\MyProject on IP network port 54321. RoadRunner opens to a new scene in the project.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject --apiPort 54321

Navigate to the location of your client and call the BulkOpenDRIVEExport function defined in the
client. Specify the name of the project path and the API port that you used to open RoadRunner. By
default, this client exports the ASAM OpenDRIVE files to a folder named Exports/OpenDRIVE
within the project.

cd "Path\To\Client"
BulkOpenDRIVEExport C:\RR\MyProject 54321

The client opens RoadRunner, exports the scenes, and prints statements to confirm the export. For
example:
Exported scene FourWaySignal.rrscene to C:/RR/MyProject/Exports/OpenDRIVE.

Navigate to the folder containing the exported files to confirm that they have exported correctly.

cd "C:\RR\MyProject\Exports\OpenDRIVE"
ls

FourWaySignal.xodr
...

See Also
AppRoadRunner

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Compile Protocol Buffers for RoadRunner gRPC API” on page 6-19
• “Create gRPC Python Client for Controlling RoadRunner Programmatically” on page 6-23

 Create gRPC C++ Client for Controlling RoadRunner Programmatically

6-33

Control RoadRunner Programmatically in Console Mode
RoadRunner provides programmatic interfaces for performing common workflow tasks such as
opening, closing, and saving scenes and projects and importing and exporting scenes. You can use
MATLAB functions or gRPC APIs for performing these common workflow tasks. The MATLAB
functions operate through a MATLAB object that opens and sets up the main RoadRunner user
interface so that you can control it programmatically. These MATLAB functions require an Automated
Driving Toolbox™ license. The gRPC API uses remote procedure call (RPC) methods, defined in a set
of protocol buffer (protobuf) schema files, that enable you to remotely control RoadRunner
programmatically. Using the gRPC framework, you can compile these files into C++, Python, or
another programming language supported by gRPC. You can then write client applications that call
these methods for controlling RoadRunner in the language of your choice.

Using the MATLAB functions and gRPC APIs, you can launch RoadRunner in console mode also
allowing RoadRunner to be run from the terminal in a non-graphical environment. This enables
distributed workflows, for example, running RoadRunner from a remote server, and empowers you to
use RoadRunner at a much larger scale. RoadRunner is often used as a part of a pipeline in
simulators where it may be required to import a scene to RoadRunner and export it to a format that is
compatible with other simulators. Using RoadRunner in console mode improves integration with such
continuous integration(CI) systems. It also improves application performance by reducing the time it
takes to load scenes in RoadRunner because you do not need to load and display scene graphics.

Like the interactive RoadRunner, RoadRunner Console can receive API commands sent from the
programmatic interface. You can write your own clients by compiling the proto files, using the
CmdRoadRunnerApi app, or the MATLAB functions for RoadRunner. If you are using the gRPC APIs,
use AppRoadRunner with the --nodisplay argument to launch RoadRunner in a non-graphical
environment. RoadRunner provides a precompiled helper command, CmdRoadRunnerApi, that
enables you to call RoadRunner RPC methods from the command line. This helper command is
located in the same folder as the AppRoadRunner executable. If you are using MATLAB, use the
roadrunner object with the NoDisplay property to launch RoadRunner in a non-graphical
environment.

The following examples show how you can export a RoadRunner scene in console mode using
MATLAB functions and gRPC APIs.

Export RoadRunner Scene in Console Mode Using MATLAB

This example shows how to export a scene from a RoadRunner project to one of the file formats
supported by RoadRunner. In this example, you export a scene to the ASAM OpenDRIVE® file format
using MATLAB® functions.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner® license and the product is installed.
• Have created a RoadRunner project folder.

Start RoadRunner Programmatically

To use MATLAB functions to control RoadRunner programmatically, use the roadrunner object. By
default, roadrunner opens RoadRunner from the default installation folder for the platform you are
using (either Windows® or Linux®). These are the default installation locations by platform:

6 Programmatic Scene Interfaces

6-34

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB version for the release you are using.

If your RoadRunner installation is at a different location than the default location, use MATLAB
settings API to customize the default value of the RoadRunner installation folder.

Export Scene from RoadRunner to ASAM OpenDRIVE

Export a scene from a RoadRunner project to the ASAM OpenDRIVE format using MATLAB.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder,InstallationFolder="C:\Program Files\RoadRunner R2022b\bin\win64",NoDisplay=true);

Open a scene in the project by using the openScene function with the roadrunner object and the
RoadRunner scene you wish to open as input arguments. This example uses the
FourWaySignal.rrscene scene, which is one of the scenes included by default in RoadRunner
projects, and is located in the Scenes folder of the project.

sceneName = "FourWaySignal.rrscene";
openScene(rrApp,sceneName);

Set export options by creating an openDriveExportOptions object to enable export of signals and
objects from the file.

options = openDriveExportOptions(OpenDriveVersion=1.5,ExportSignals=true,ExportObjects=true);

Use the exportScene function to export the scene to ASAM OpenDRIVE. Specify your roadrunner
object, the name of the file to which you want to export the scene, the export format, and the export
options as input arguments to the exportScene function.

filename = "FourWaySignal.xodr";
formatname = "OpenDRIVE";
exportScene(rrApp,filename,formatname,options);

Navigate to the Exports folder and open the exported ASAM OpenDRIVE file. Verify that the
<header> tag contains the specified file version. The Exports folder contains only the ASAM
OpenDRIVE file and corresponding GeoJSON file.

Export RoadRunner Scene in Console mode using gRPC APIs
This section shows how you can export a scene in console mode using gRPC APIs. In this example,
you export a RoadRunner scene to the ASAM OpenDRIVE® file format using command-line
operations. For more details on gRPC APIs, consider previewing “Control RoadRunner
Programmatically Using gRPC API” on page 6-2.

 Control RoadRunner Programmatically in Console Mode

6-35

To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file. It is recommended to use MinGW®

because some Windows shells do not output the standard output from AppRoadRunner to the
command line.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2022b\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2022b/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

• Specify the nodisplay option to start RoadRunner without a GUI window.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321 --nodisplay

Preview the programmatic operations by exporting one scene from the current project to ASAM
OpenDRIVE. To perform these operations, you use the CmdRoadRunnerApi helper command. This
helper command is located in the same folder as the AppRoadRunner executable file.

Load the FourWaySignal scene by using the LoadScene RPC method. This scene is included by
default in the Scenes folder of RoadRunner projects. In the serverAddress option, replace the port
number with the apiPort value you specified when opening RoadRunner. If you used the default
port, omit this option.

CmdRoadRunnerApi "LoadScene(file_path='FourWaySignal')" --serverAddress=localhost:54321

Export the scene to the ASAM OpenDRIVE version 1.6 format by using the Export RPC method.

• For the exported file name, specify the same name as the scene. By default, RoadRunner exports
the scene to the Exports folder of the opened project.

• In the serverAddress option, replace the port number with the apiPort value you specified
when opening RoadRunner.

CmdRoadRunnerApi "Export(file_path='FourWaySignal.xodr' format_name='opendrive' ^
open_drive_settings.open_drive_version='1.6')" --serverAddress=localhost:54321

Navigate to the Exports folder and open the exported ASAM OpenDRIVE file. Verify that the
<header> tag contains the specified file version.

cd "C:\RR\MyProject\Exports"
FourWaySignal.xodr

<OpenDRIVE>
 <header revMajor="1" revMinor="6" ...>
 ...

6 Programmatic Scene Interfaces

6-36

If your project included only the default scene, then your folder contains only the ASAM OpenDRIVE
file and corresponding GeoJSON file.

FourWaySignal.xodr
FourWaySignal.geojson

See Also
roadrunner | openScene | exportScene | AppRoadRunner | LoadScene | Export

Related Examples
• “Control RoadRunner Programmatically Using gRPC API” on page 6-2
• “Export Multiple Scenes Using MATLAB” on page 6-38

 Control RoadRunner Programmatically in Console Mode

6-37

Export Multiple Scenes Using MATLAB

This example shows how to bulk-export scenes from a RoadRunner project to one of the file formats
supported by RoadRunner. In this example, you export scenes to the ASAM OpenDRIVE® file format
using MATLAB® functions.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner® license and the product is installed.
• Have created a RoadRunner project folder.

Start RoadRunner Programmatically

To use MATLAB functions to control RoadRunner programmatically, use the roadrunner object. By
default, roadrunner opens RoadRunner from the default installation folder for the platform you are
using (either Windows® or Linux®). These are the default installation locations by platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB version for the release you are using.

If your RoadRunner installation is at a different location than the default location, use MATLAB
settings API to customize the default value of the RoadRunner installation folder.

Export Scene from RoadRunner to ASAM OpenDRIVE

Export a scene from a RoadRunner project to the ASAM OpenDRIVE format using MATLAB.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder,InstallationFolder="C:\Program Files\RoadRunner R2022b\bin\win64");

Open a scene in the project by using the openScene function with the roadrunner object and the
RoadRunner scene you wish to open as input arguments. This example uses the
FourWaySignal.rrscene scene, which is one of the scenes included by default in RoadRunner
projects, and is located in the Scenes folder of the project.

sceneName = "FourWaySignal.rrscene";
openScene(rrApp,sceneName);

Set export options by creating an openDriveExportOptions object to enable export of signals and
objects from the file.

options = openDriveExportOptions(OpenDriveVersion=1.5,ExportSignals=true,ExportObjects=true);

6 Programmatic Scene Interfaces

6-38

Use the exportScene function to export the scene to ASAM OpenDRIVE. Specify your roadrunner
object, the name of the file to which you want to export the scene, the export format, and the export
options as input arguments to the exportScene function.

filename = "FourWaySignal.xodr";
formatname = "OpenDRIVE";
exportScene(rrApp,filename,formatname,options);

Export Multiple Scenes from RoadRunner to ASAM OpenDRIVE Format

Export multiple scenes in a RoadRunner project to ASAM OpenDRIVE® format using MATLAB.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

demoProj = fullfile('C:','DemoProject');
rrApp = roadrunner(demoProj,InstallationFolder="C:\Program Files\RoadRunner R2022b\bin\win64");

Specify the path to the scene files you wish to export. You must specify the path to the Scenes folder
in your RoadRunner project, which contains all the scenes in that project.

sceneFiles = dir(fullfile(demoProj,'Scenes','*.rrscene'));
scenes = {sceneFiles.name};

Specify the path to your export folder. this is the folder into which RoadRunner exports all your scene
files. Iterate through all the scene files, opening each scene using the openScene function and then
calling the exportScene function to export the open scene to the ASAM OpenDRIVE format.

exportFolder = fullfile('C:','OpenDRIVE');
for sndx = 1:numel(scenes)
 openScene(rrApp,scenes{sndx});
 [~,fileName] = fileparts(scenes{sndx});
 exportFilePath = [fullfile(exportFolder,fileName) '.xodr'];
 exportScene(rrApp,exportFilePath,'OpenDRIVE');
end

Once all the scene files have been exported, close the RoadRunner application by using the close
function.

close(rrApp);

Extend RoadRunner Export Options

To customize the script further, you can specify non-default export settings or specify other file
formats. For more details on supported formats, see the exportScene function. For additional
flexibility in exporting scenes, consider exporting the scene using custom export options. For more
details, see the exportCustomFormat function.

See Also
roadrunner | openScene | exportScene | close

 Export Multiple Scenes Using MATLAB

6-39

Related Examples
• “Export to ASAM OpenDRIVE” on page 5-24
• “Convert Asset Data Between RoadRunner and ASAM OpenDRIVE” on page 5-16

6 Programmatic Scene Interfaces

6-40

Convert Scenes Between Formats Using MATLAB Functions

This example shows how to import RoadRunner scenes from one file format and export those scenes
to a different format. In this example, you import ASAM OpenDRIVE® files into scenes, save them to
a project, and export the scenes to export them to Filmbox® FBX® files using MATLAB® functions.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner® license and the product is installed.
• Have created a RoadRunner project folder.

Start RoadRunner Programmatically

To use MATLAB functions to control RoadRunner programmatically, use the roadrunner object. By
default, roadrunner opens RoadRunner from the default installation folder for the platform you are
using (either Windows® or Linux®). These are the default installation locations by platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB release you are using.

If your RoadRunner installation is at a different location than the default location, use MATLAB
settings API to customize the default value of the RoadRunner installation folder.

Import and Export of Multiple Scenes

Import multiple scenes from the ASAM OpenDRIVE format and export them to the FBX format.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

demoProj = fullfile('C:','DemoProject');
rrApp = roadrunner(demoProj,InstallationFolder="C:\Program Files\RoadRunner R2022b\bin\win64 ");

Specify the paths to the ASAM OpenDRIVE files you want to import and to the folder into which you
want to export the Filmbox files.

odrFolder = fullfile('C:','OpenDRIVE');
odrFiles = dir(fullfile(odrFolder,'*.xodr'));
exportFolder = fullfile('C:','Filmbox');

Import the ASAM OpenDRIVE files and export them to the FBX format. Import each ASAM
OpenDRIVE file into a new scene by using the newScene function to create a new scene in your
project, then specifying the file path for each scene to import to the importScene function. Then,
export the imported scene to a file by using the exportScene function.

for fndx = 1:length(odrFiles)
 newScene(rrApp);

 Convert Scenes Between Formats Using MATLAB Functions

6-41

 importFilePath = fullfile(odrFolder,odrFiles(fndx).name);
 importScene(rrApp,importFilePath,"OpenDRIVE");
 [~,fileName] = fileparts(odrFiles(fndx).name);
 exportFilePath = [fullfile(exportFolder,fileName) '.fbx'];
 exportScene(rrApp,exportFilePath,"Filmbox");
end

Once all the scenes have been exported, close the RoadRunner application by using the close
function.

close(rrApp);

Extend RoadRunner Export Options

To customize the script further, you can specify non-default import and export settings or specify
other file formats. For more details on supported formats, see the importScene and exportScene
functions. For additional flexibility in exporting scenes, consider exporting the scene using custom
export options. For more details, see the exportCustomFormat function.

See Also
roadrunner | newScene | exportScene | exportCustomFormat | importScene | close

Related Examples
• “Importing ASAM OpenDRIVE Files” on page 3-2
• “Export to FBX” on page 5-3

6 Programmatic Scene Interfaces

6-42

Build Simple Roads Programatically Using RoadRunner HD Map

RoadRunner HD Map is a road data model for representing high-definition (HD) map data in a
RoadRunner scene. The model defines a simple structure to represent road layouts using lanes, lane
boundaries, lane markings, and junctions. This example shows how to build simple roads using
RoadRunner HD Map MATLAB® objects and functions. You can then import the roads into
RoadRunner. Use these steps to construct a road and import it into a RoadRunner scene:

• Build an HD map in MATLAB.
• Verify the representation of lanes and lane boundaries by plotting the map in MATLAB.
• Write the map to a RoadRunner HD Map (.rrhd) file.
• Import the file into RoadRunner and preview the RoadRunner HD Map data.
• Build a RoadRunner scene from the imported file.

Create Straight, Unmarked Road

To define a fixed-width road, you must specify a series of xy-coordinates for the center of the road at
various points along its path. First, create a straight, unmarked road, as shown in this figure. Then,
plot the road in MATLAB and save it to a binary file.

Create an empty RoadRunner HD Map as a roadrunnerHDMap object.

rrMap = roadrunnerHDMap;

Define the center of the straight road as a matrix that contains three sets of xy-coordinates specifying
the center of the road. Also, define the width of the road.

 Build Simple Roads Programatically Using RoadRunner HD Map

6-43

roadCenters = [0 0; 0 50; 0 100];
roadWidth = 6;

Create the left and right boundaries of the road using the roadrunner.hdmap.LaneBoundary
object. Specify the lane boundary information for the lane ID and the coordinates defining the lane
geometry.

laneGeometryLeft = roadCenters-[roadWidth/2 0];
laneGeometryRight = roadCenters+[roadWidth/2 0];
rrMap.LaneBoundaries(1) = roadrunner.hdmap.LaneBoundary(ID="Left",Geometry=laneGeometryLeft);
rrMap.LaneBoundaries(2) = roadrunner.hdmap.LaneBoundary(ID="Right",Geometry=laneGeometryRight);

Create the road lane using the roadrunner.hdmap.Lane object. Specify the lane information for
the lane ID, the coordinates defining the lane geometry, the driving direction, and the lane type.

rLane = roadrunner.hdmap.Lane(ID="Lane",Geometry=roadCenters,TravelDirection="Forward",LaneType="Driving");

Link the lane boundaries to the lane. Define the left and the right lane boundaries for the lane, and
specify the alignments between the lane and lane boundaries.

leftBoundary(rLane,"Left",Alignment="Forward");
rightBoundary(rLane,"Right",Alignment="Forward");
rrMap.Lanes = rLane;

Plot the lane centers and lane boundaries to preview the lanes and lane boundaries before importing
them into RoadRunner.

plot(rrMap)

6 Programmatic Scene Interfaces

6-44

Write the HD map to a file using the write function.

write(rrMap,"straightRoad.rrhd")

Import HD Map File into RoadRunner

For detailed instructions on importing a RoadRunner HD Map file with the .rrhd extension into
RoadRunner, previewing the map, and building the scene, see “Import Custom Data Using
RoadRunner HD Map” on page 3-21.

This figure shows a scene of a straight, unmarked road built using RoadRunner Scene Builder.

Add Markings to Straight Road

In this section, you add solid, white lane markings to the left and right lane boundaries of the straight
road you created in the previous section. To specify a lane marking, you must use an asset in
RoadRunner. In this example, you use assets that are part of the “RoadRunner Asset Types” on page
2-45. Specify these assets in the map by using a relative path to the RoadRunner project folder.

Define the path to the solid, white lane marking asset using the
roadrunner.hdmap.RelativeAssetPath function.

solidWhiteAsset = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/SolidSingleWhite.rrlms");

Create a solid, white lane marking on the straight road using the
roadrunner.hdmap.LaneMarking object. Specify the lane marking information for the lane
marking ID and the path to the asset.

rrMap.LaneMarkings = roadrunner.hdmap.LaneMarking(ID="SolidWhite",AssetPath=solidWhiteAsset);

Create a reference for the solid, white marking using the roadrunner.hdmap.MarkingReference
object. You can use this reference to apply the marking to the lane boundaries.

markingRefSW = roadrunner.hdmap.MarkingReference(MarkingID=roadrunner.hdmap.Reference(ID="SolidWhite"));

Use parametric attributes to apply this lane marking to the full length of the left and right lane
boundaries.

 Build Simple Roads Programatically Using RoadRunner HD Map

6-45

markingSpan = [0 1];
markingAttribSW = roadrunner.hdmap.ParametricAttribution(MarkingReference=markingRefSW,Span=markingSpan);
rrMap.LaneBoundaries(1).ParametricAttributes = markingAttribSW;
rrMap.LaneBoundaries(2).ParametricAttributes = markingAttribSW;

Write the modified HD map to a file.

write(rrMap,"straightRoadWithMarkings.rrhd");

This figure shows a scene of a straight road with solid, white lane markings for the left and right
boundaries built using RoadRunner Scene Builder.

Create Two-Way Road

A two-way road has two lanes with opposite driving directions. A solid yellow lane marking separates
the lanes. In this section, you create a straight, two-way road, as shown in this figure, using the same
road centers and road width as for the straight, unmarked road.

6 Programmatic Scene Interfaces

6-46

Create an empty RoadRunner HD Map as a roadrunnerHDMap object.

rrMap = roadrunnerHDMap;

Specify the lane and the lane boundaries. In this example, preinitialization of these values results in
improved performace as the number of objects in the map increases.

rrMap.Lanes(2,1) = roadrunner.hdmap.Lane();
rrMap.LaneBoundaries(3,1) = roadrunner.hdmap.LaneBoundary();

Assign the Lane property values. Use the deal function to match up the input and the output lists.

roadCenterLeft = roadCenters-[roadWidth/4 0];
roadCenterRight = roadCenters+[roadWidth/4 0];
[rrMap.Lanes.ID] = deal("Lane1","Lane2");
[rrMap.Lanes.Geometry] = deal(roadCenterLeft,roadCenterRight);
[rrMap.Lanes.TravelDirection] = deal("Backward","Forward");
[rrMap.Lanes.LaneType] = deal("Driving");

Assign the LaneBoundaries property values. In this example, the center lane is shared between
Lane1 and Lane2.

[rrMap.LaneBoundaries.ID] = deal("Left","Center","Right");
[rrMap.LaneBoundaries.Geometry] = deal(roadCenters-[roadWidth/2 0], ...
 roadCenters,roadCenters+[roadWidth/2 0]);

Link the lane boundaries to the lanes. Define the left and the right lane boundaries for each lane, and
specify the alignments between the lanes and lane boundaries.

leftBoundary(rrMap.Lanes(1),"Left",Alignment="Forward");
rightBoundary(rrMap.Lanes(1),"Center",Alignment="Forward");
leftBoundary(rrMap.Lanes(2),"Center",Alignment="Forward");
rightBoundary(rrMap.Lanes(2),"Right",Alignment="Forward");

 Build Simple Roads Programatically Using RoadRunner HD Map

6-47

Add a solid, yellow marking, in addition to the solid, white marking to the HD map. Define the path to
the solid, yellow lane marking asset using the roadrunner.hdmap.RelativeAssetPath function.

solidYellowAsset = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/SolidSingleYellow.rrlms");

Create a solid, yellow lane marking and solid, white lane markings on the straight road using the
roadrunner.hdmap.LaneMarking object. Specify the lane marking information for the lane
marking IDs and the paths to the assets.

rrMap.LaneMarkings(2,1) = roadrunner.hdmap.LaneMarking();
[rrMap.LaneMarkings.ID] = deal("SolidWhite","SolidYellow");
[rrMap.LaneMarkings.AssetPath] = deal(solidWhiteAsset,solidYellowAsset);

Assign the white marking to the lane boundaries at the lane edges and the yellow marking to the
center lane boundary. These markings span the entire length of the boundaries.

markingRefSY = roadrunner.hdmap.MarkingReference(MarkingID=roadrunner.hdmap.Reference(ID="SolidYellow"));
markingAttribSY = roadrunner.hdmap.ParametricAttribution(MarkingReference=markingRefSY,Span=markingSpan);
[rrMap.LaneBoundaries.ParametricAttributes] = deal(markingAttribSW,markingAttribSY,markingAttribSW);

Plot the lane centers and lane boundaries.

plot(rrMap)

Write the HD map to a file.

write(rrMap,"twoWayRoad.rrhd")

6 Programmatic Scene Interfaces

6-48

This figure shows a scene of the two-way road defined in this section, built using RoadRunner Scene
Builder.

Add Lane to One-Way Road

In this section, you add a lane to a one-way road. Use a dashed, white marking to separate two lanes
with the same travel direction. To add a lane to a one-way road, you must split one lane into two from
the left edge of the lane. You must create additional lanes and lane boundaries in the RoadRunner HD
map where the lane splits. This figure shows a one-way road with an added lane on the left side:

 Build Simple Roads Programatically Using RoadRunner HD Map

6-49

Create an empty RoadRunner HD Map as a roadrunnerHDMap object.

rrMap = roadrunnerHDMap;

6 Programmatic Scene Interfaces

6-50

Specify the lane and the lane boundaries.

rrMap.Lanes(5,1) = roadrunner.hdmap.Lane();
rrMap.LaneBoundaries(8,1) = roadrunner.hdmap.LaneBoundary();

Specify the lane groups and the lane markings.

rrMap.LaneGroups(3,1) = roadrunner.hdmap.LaneGroup();
rrMap.LaneMarkings(3,1) = roadrunner.hdmap.LaneMarking();

Assign the Lane property values. Split Lane1 into Lane4 and Lane5, and use Lane2 and Lane3 for
the transition.

[rrMap.Lanes.ID] = deal("Lane1","Lane2","Lane3","Lane4","Lane5");
[rrMap.Lanes.Geometry] = deal([0 -20;0 0;0 20;], [0 20;0 40;0 60;], [0 20;-3 40;-6 60], [-6 60;-6 80;-6 100], [0 60;0 80;0 100]);
[rrMap.Lanes.TravelDirection] = deal("Forward");
[rrMap.Lanes.LaneType] = deal("Driving");

Assign the LaneBoundaries property values. Lane3 shares its right boundary, Left2, with
Lane2.

[rrMap.LaneBoundaries.ID] = deal("Left1","Right1","Left2","Right2","Left3","Left4","Center4","Right4");
[rrMap.LaneBoundaries.Geometry] = deal([-3 -20;-3 0;-3 20],[3 -20;3 0;3 20],[-3 20;-3 40;-3 60;],...
 [3 20;3 40;3 60],[-3 20;-6 40;-9 60],[-9 60;-9 80;-9 100],[-3 60;-3 80;-3 100],[3 60;3 80;3 100]);

Link the lane boundaries to the lanes. Define the left and the right lane boundaries for each lane, and
specify alignment between the lanes and lane boundaries.

leftBoundary(rrMap.Lanes(1),"Left1",Alignment="Forward");
rightBoundary(rrMap.Lanes(1),"Right1",Alignment="Forward");
leftBoundary(rrMap.Lanes(2),"Left2",Alignment="Forward");
rightBoundary(rrMap.Lanes(2),"Right2",Alignment="Forward");
leftBoundary(rrMap.Lanes(3),"Left3",Alignment="Forward");
rightBoundary(rrMap.Lanes(3),"Left2",Alignment="Forward");
leftBoundary(rrMap.Lanes(4),"Left4",Alignment="Forward");
rightBoundary(rrMap.Lanes(4),"Center4",Alignment="Forward");
leftBoundary(rrMap.Lanes(5),"Center4",Alignment="Forward");
rightBoundary(rrMap.Lanes(5),"Right4",Alignment="Forward");

Specify the alignments between the lanes by defining their predecessor and successor relationships.

rrMap.Lanes(3).Successors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane4"));
rrMap.Lanes(3).Predecessors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane1"));
rrMap.Lanes(2).Successors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane5"));
rrMap.Lanes(2).Predecessors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane1"));
rrMap.Lanes(1).Successors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane2"));
rrMap.Lanes(4).Predecessors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane3"));
rrMap.Lanes(5).Predecessors = roadrunner.hdmap.AlignedReference(Reference=roadrunner.hdmap.Reference(ID="Lane2"));

Add a dashed, white marking in addition to the solid white and yellow markings, to the HD map.
Define the path to the dashed, white lane marking asset using the
roadrunner.hdmap.RelativeAssetPath function.

dashedWhiteAsset = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/DashedSingleWhite.rrlms");

Create a dashed, white lane marking on the road using the roadrunner.hdmap.LaneMarking
object.

 Build Simple Roads Programatically Using RoadRunner HD Map

6-51

rrMap.LaneMarkings(3,1) = roadrunner.hdmap.LaneMarking();
[rrMap.LaneMarkings.ID] = deal("SolidWhite","SolidYellow","DashedWhite");
[rrMap.LaneMarkings.AssetPath] = deal(solidWhiteAsset,solidYellowAsset,dashedWhiteAsset);

Assign lane markings using the parametric attributes.

markingRefDW = roadrunner.hdmap.MarkingReference(MarkingID=roadrunner.hdmap.Reference(ID="DashedWhite"));
markingAttribDW = roadrunner.hdmap.ParametricAttribution(MarkingReference=markingRefDW,Span=markingSpan);
[rrMap.LaneBoundaries.ParametricAttributes] = deal(markingAttribSY,markingAttribSW,markingAttribDW,markingAttribSW, ...
 markingAttribSY,markingAttribSY,markingAttribDW,markingAttribSW);

Plot the lane centers and lane boundaries.

plot(rrMap)

Write the HD map to a file.

write(rrMap,"laneAdd.rrhd")

This figure shows a scene of the one-way road with two lanes defined in this section, built using
RoadRunner Scene Builder.

6 Programmatic Scene Interfaces

6-52

See Also
roadrunner | roadrunnerHDMap

Related Examples
• “Build Scenes from Custom Data Using RoadRunner HD Map”

 Build Simple Roads Programatically Using RoadRunner HD Map

6-53

RoadRunner Asset Library Product
Overview

7

RoadRunner Asset Library Product Description
Populate RoadRunner scenes with a library of 3D models

RoadRunner Asset Library is a set of 3D models and assets for 3D scenes created with RoadRunner.
The library provides hundreds of models, including road and highway signs, traffic signals, road
surface markings, trees, barriers, and road damage textures, such as cracks and oil spills. All models
are professionally designed and visually consistent.

7 RoadRunner Asset Library Product Overview

7-2

	Get Started with RoadRunner
	RoadRunner Product Description
	RoadRunner System Requirements
	Install and Activate RoadRunner
	Verify System Requirements
	Get License and Product Installer
	Install RoadRunner
	Activate License
	Create a New Project and Scene

	Get RoadRunner Updates and Upgrades
	Update Installed Release
	Upgrade RoadRunner Release
	Install RoadRunner Add-On Products

	Update RoadRunner Licenses
	Update RoadRunner Individual License
	Update RoadRunner Network Licenses

	Install Network License Manager for RoadRunner
	Overview
	Install New Network License Manager for RoadRunner Only
	Install New Network License Manager for All Products

	Update Network License Manager for RoadRunner
	Overview
	Update Existing Network License Manager for New RoadRunner Installation
	Update Existing Network License Manager to Upgrade RoadRunner Software

	Create Simple RoadRunner Scene
	Prerequisites
	Create New Scene and Project
	Add Roads
	Add Surface Terrain
	Add Elevation and Bridges
	Modify Junction
	Add Crosswalk
	Add Turning Lanes
	Add Props
	Other Things to Try

	Camera Control in RoadRunner
	Open Scene
	Rotate Camera
	Zoom Camera In and Out
	Push Past Behavior
	Move Camera Horizontally
	Move Camera Vertically
	Frame Camera on Selected Object
	Frame Camera on Cursor
	Change View Projections
	Set View Direction of Camera

	Create Roads Around Imported GIS Assets
	Download and Import GIS Assets into RoadRunner
	Set World Origin
	Add GIS Assets
	Create Roads Around GIS Assets
	Compare Roads Against Imported GIS Assets

	Create Traffic Signals at Junctions
	Create New Scene
	Create Junctions
	Add Signals to Junctions
	Inspect Phases and Maneuver Roads
	Edit Signal Phases

	RoadRunner Fundamentals
	RoadRunner Project and Scene System
	Projects
	Scenes
	Project and Scene Version Control

	Window Layouts
	Switch Between Tabbed Panes
	Undock a Pane
	Dock a Pane
	Save the Current Window Layout
	Restore a Saved Window Layout
	Delete a Saved Window Layout
	Reset the Window Layout to the Default Layout

	Coordinate Space and Georeferencing
	Local Coordinate System
	Georeferencing (Geographic Coordinates and Projections)

	Manipulate Scene Objects
	Select Objects
	Move Objects
	Create Objects
	Delete Objects
	Modify Objects

	Keyboard Shortcuts and Mouse Actions for RoadRunner
	Editing
	Object Selection and Manipulation
	Camera Control (Editing Canvas)
	Camera Control (2D Editor)
	Scene Views
	Scenarios (Requires RoadRunner Scenario)
	Utilities
	File Operations
	Update Linux Ubuntu Key Mapping

	Choose a RoadRunner Tool
	Road Tools
	Junction Tools
	Lane Tools
	Marking Tools
	Prop Tools
	Terrain Tools
	GIS Tools
	Utility Tools

	RoadRunner Asset Types
	Texture and Material Assets
	Prop Assets
	Marking Assets
	Road Assets
	GIS Assets

	Create, Import, and Modify Assets
	Create and Import Assets
	Modify Assets
	Manage Assets
	Visualize Assets
	Upgrade RoadRunner Asset Library

	Create, Import, and Modify Scene Assets
	Create Template Asset of Entire Scene
	Create Template Asset from Selection
	Add Template Asset to a Scene by Dragging
	Add Template Asset to Scene Using Copy Paste

	Resolve Geometry Issues
	Angle Threshold
	Show Edge Visualization
	Detect Geometry Issues

	Point Editing
	Create a New Point
	Move a Point

	Curve Editing
	Create a New Curve
	Extend a Curve at Its Ends by Adding Control Points
	Add Control Points to the Interior of a Curve
	Move a Control Point
	Change the Tangents of a Curve

	Polygon Editing
	Create a New Polygon
	Add Control Points to a Polygon
	Move a Control Point
	Change the Tangents of a Polygon

	Tangent Editing
	Adjust a Tangent
	Make Tangents Continuous
	Make Tangents Discontinuous
	Curve Tangents

	Span Editing
	Span Overview
	Select a Span or Span Node
	Create a New Span Node
	Edit Attributes of a Span or Span Node
	Move a Span Node
	Delete a Span Node
	Tips for Deleting Nodes

	Region Graph Editing
	Create a Graph Edge Curve
	Split a Graph Edge Curve
	Move a Graph Node
	Change the Tangents of a Graph Edge Curve
	Create a Region
	Split a Region
	Regions With Holes

	Merge Multiple RoadRunner Scenes
	Merge Two Non-Geolocated Scenes
	Merge Two Geolocated Scenes
	Merge Geolocated Scene to Non-Gelocated Scene
	Limitations

	Graphics and Startup Issues
	System Requirements
	Graphics Drivers
	Laptops
	Remote Desktops
	Video Card Connection
	Further Support

	Obtain RoadRunner Log Files
	Locate Log Folder
	Provide Log File Contents to MathWorks Technical Support

	Import Data
	Importing ASAM OpenDRIVE Files
	Import ASAM OpenDRIVE File and Build Scene
	Explicit Lane Direction Priority
	Limitations

	Decompress LAZ Files
	Decompression Process

	Download GIS Data for Use in RoadRunner
	Choose USGS Interface for Downloading GIS Data
	Download GIS Data

	Importing ASAM OpenCRG Files
	Import ASAM OpenCRG File

	Build Roads by Using Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Data
	Choose Area of Interest
	Import and Explore Data
	Build Roads
	Troubleshoot Import and Build Issues

	Import Custom Data Using RoadRunner HD Map
	Introduction
	Compile Protocol Buffers for RoadRunner HD Map
	Prepare Custom Data
	Create RoadRunner HD Map Binary File from Custom Data
	Import HD Map File into RoadRunner

	Build Roads Using OpenStreetMap Data
	Import OpenStreetMap File
	Explore Imported Data
	Build Roads
	Troubleshoot Import and Build Issues
	Limitations

	Design Scenes
	Resolve Triangulation Issues in Junctions
	Adjust Road Elevations
	Bank Roads
	Use Slip Connections

	How Surfaces Work in RoadRunner
	Terrain Surface Model
	Surfaces and Roads
	Bridges
	Extruded Surfaces
	Surfaces and Elevation

	Create Parking Garage
	Create a Parking Level Scene Template
	Create Ground Level
	Add Levels to Parking Garage
	Complete Garage Structure

	Export Scenes
	Export to AutoCAD
	AutoCAD Export

	Export to FBX
	FBX Export
	Advanced Details

	Export to glTF
	glTF Export
	Limitations

	Export to OpenFlight
	OpenFlight Export
	Limitations

	Export to OpenSceneGraph
	OpenSceneGraph Export
	Limitations

	Export to Wavefront OBJ
	Wavefront Export
	Advanced Details

	Export to GeoJSON
	GeoJSON Overview
	GeoJSON Export
	Export Options
	Sample Exported GeoJSON File
	Traffic Signal Phases in GeoJSON

	Export to USD
	USD Export
	Limitations

	Convert Asset Data Between RoadRunner and ASAM OpenDRIVE
	Open Asset Configuration File
	Explore File Structure
	Configure Assets for Export
	Configure Imported Assets
	Configure Asset Mapping File Interactively

	Export to ASAM OpenDRIVE
	ASAM OpenDRIVE Overview
	Export to ASAM OpenDRIVE
	Export Options
	ASAM OpenDRIVE Representations
	Limitations

	Left-Hand Drive Export to ASAM OpenDRIVE
	Recommended Approach
	ASAM OpenDRIVE Details
	RoadRunner Export
	Examples

	Add Metadata to RoadRunner Scene Elements
	Add Metadata
	Set Attributes

	Set ASAM OpenDRIVE Attributes Using Metadata
	Load RoadRunner Scene
	Add Metadata for Road
	Add Metadata for Junction
	Export to ASAM OpenDRIVE
	Inspect ASAM OpenDRIVE Attributes

	Export to ASAM OpenCRG
	Export to ASAM OpenCRG

	Segmentation
	Segmentation Overview
	Toggle Segmentation Display
	Categories

	Downloading Plugins
	Unity
	Unreal and CARLA

	RoadRunner Metadata Export
	Metadata Overview
	File Details

	Export to Apollo
	Apollo Overview
	About the Different Apollo Maps
	Generating Necessary Map Files
	Visualizing Maps in Apollo Dreamview
	Routing Simulations in Apollo Dreamview
	Visualizing Maps in SVL Simulator
	Apollo User Asset Configuration
	Unsupported Features

	Export to Metamoto
	Export to Unity
	Unity Overview
	Installing the Import Tool
	Exporting from RoadRunner to Unity
	Importing into Unity
	Setting Up the Sample Vehicle

	Export to Unreal Using Datasmith (.udatasmith) File
	Unreal Overview
	Installing the Plugin
	Exporting from RoadRunner to Unreal
	Importing into Unreal
	Exporting from RoadRunner to Unreal using Datasmith Road
	Importing into Unreal using Datasmith Road
	Known Issues
	Limitations

	Export to Unreal Using Filmbox (.fbx) File
	Unreal Overview
	Installing the Plugin
	Exporting from RoadRunner to Unreal
	Importing into Unreal
	Importing Without the Plugin
	Known Issues

	Export to CARLA
	CARLA Export Overview
	Installing the Plugins
	Exporting from RoadRunner to CARLA
	Importing into CARLA

	Export to VTD
	Exporting to VTD
	Export Options (ASAM OpenDRIVE)
	Export Options (OpenSceneGraph)
	Import into VTD
	Limitations

	Customize Levels of Detail in Exported Scenes
	Set Levels of Detail in Scene
	Export Highest Levels of Detail from a Scene
	Modify Triangulation Settings
	Modify Scene Rendering
	Pack Props
	Visualize Performance Improvements
	Export Scene

	Export Custom Formats
	Create Export Configuration XML File
	Save Export Configuration File to Project

	Export to STL
	STL Export
	Advanced Details
	Limitations

	Programmatic Scene Interfaces
	Control RoadRunner Programmatically Using gRPC API
	How The RoadRunner API Works
	How The RoadRunner API Sends and Receives Data
	Connect to RoadRunner API Server
	Use RoadRunner API from Command Line
	Use RoadRunner API in Various Programming Languages

	Convert Scenes Between Formats Using gRPC API
	How the RoadRunner gRPC API Works
	Open RoadRunner and Start API Server
	Import and Export Single Scene
	Import and Export Multiple Scenes
	Extend RoadRunner Import and Export Options

	Export Multiple Scenes Using gRPC API
	How the RoadRunner gRPC API Works
	Open RoadRunner and Start API Server
	Export Single Scene
	Export Multiple Scenes
	Extend RoadRunner Export Options

	Compile Protocol Buffers for RoadRunner gRPC API
	Verify Minimum Software Requirements
	Install gRPC and Protobuf Compiler
	Copy Protobuf Files to Writable Folder
	Select Protobuf Files to Compile
	Compile Protobuf Files
	Write Clients

	Create gRPC Python Client for Controlling RoadRunner Programmatically
	Prerequisites
	Create Client File
	Write Client
	Call Client

	Create gRPC C++ Client for Controlling RoadRunner Programmatically
	Prerequisites
	Create Client File
	Write Client
	Call Client

	Control RoadRunner Programmatically in Console Mode
	Export RoadRunner Scene in Console Mode Using MATLAB
	Export RoadRunner Scene in Console mode using gRPC APIs

	Export Multiple Scenes Using MATLAB
	Convert Scenes Between Formats Using MATLAB Functions
	Build Simple Roads Programatically Using RoadRunner HD Map

	RoadRunner Asset Library Product Overview
	RoadRunner Asset Library Product Description

